Algorithmen und Datenstrukutren: Binäre Suche vs. lineare Suche in JAVA

Der Algorithmus

Die binäre Suche funktioniert nur auf einem bereits sortiertem Datenbestand, daher wird die Zeit für das Sortieren des Arrays „myArray“ mit Merge-Sort auf die Such-Zeit addiert. Da die 11 Elemente im Beispiel-Array sehr wenige sind, sind die Zeiten in ms wenig repräsentativ.

package AlgoDat;

public class SearchAlgorithm {
    // Zu durchsuchendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};
    
    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static SearchAlgorithm program;

    public int linearSearch(int[] array, int contentToSearchFor)
    {
        for (int i = 0; i < array.length; i++)
        {
            if (array[i] == contentToSearchFor)
            {
                return i;
            }
        }

        return -1;
    }

    public int binarySearch(int[] myArray, int contentToSearchFor)
    {
        // Start conditions
        int lowIndex = 0;
        int highIndex = myArray.length - 1;

        while (lowIndex <= highIndex)
        {
            int middlePosition = (lowIndex + highIndex) / 2;
            int middleContent = myArray[middlePosition];

            if (contentToSearchFor == middleContent) 
            {
                return middlePosition;
            }

            // Halbieren der Suchelemente
            if (contentToSearchFor < middleContent)
            {
                highIndex = middlePosition - 1;
            }
            else
            {
                lowIndex = middlePosition + 1;
            }
        }

        // Außerhalb der While-Schleife wissen wir, dass wir
        // das Element nicht gefunden haben :-(
        return -1;
    }

    // Konstruktor
    public SearchAlgorithm()
    {
        int arrayContent = -1;
        long startTime = 0;
        long endTime = 0;
        int index = -1;
        long passedTime = 0;

        System.out.println("Lineare Suche");
        System.out.println("=============");
        // Not found
        arrayContent = 23;
        startTime = System.nanoTime();
        index = linearSearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' wurde nicht gefunden in myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = endTime - startTime;
        System.out.println("Lineare Suche not found: " + passedTime + " ms.");
        
        // Best case
        arrayContent = 22;
        startTime =  System.nanoTime();
        index = linearSearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = endTime - startTime;
        System.out.println("Lineare Suche Best-Case: " + passedTime + " ms.");

        // Average case
        arrayContent = 3;
        startTime =  System.nanoTime();
        index = linearSearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = endTime - startTime;
        System.out.println("Lineare Suche Average-Case: " + passedTime + " ms.");

        // Worst case
        arrayContent = 1;
        startTime =  System.nanoTime();
        index = linearSearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = endTime - startTime;
        System.out.println("Lineare Suche Worst-Case: " + passedTime + " ms.");

        System.out.println("Binäre Suche");
        System.out.println("============");

        /*********************************************/
        /* die binäre Suche benötigt ein sortiertes  */
        /* Array, damit sie funktioniert.            */
        /*********************************************/
        startTime = System.nanoTime();
        this.mergeSort(myArray);
        endTime =  System.nanoTime();
        long passedSortTime = endTime - startTime;

        // Not found
        arrayContent = 23;
        startTime = System.nanoTime();
        index = binarySearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' wurde nicht gefunden in myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = passedSortTime + (endTime - startTime);
        System.out.println("Binäre Suche not found: " + passedTime + " ms.");
        
        // Best case
        arrayContent = 22;
        startTime =  System.nanoTime();
        index = binarySearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = passedSortTime + (endTime - startTime);
        System.out.println("Binäre Suche erstes Element: " + passedTime + " ms.");

        // Average case
        arrayContent = 3;
        startTime =  System.nanoTime();
        index = binarySearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = passedSortTime + (endTime - startTime);
        System.out.println("Binäre Suche mittleres Element: " + passedTime + " ms.");

        // Worst case
        arrayContent = 1;
        startTime =  System.nanoTime();
        index = binarySearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = passedSortTime + (endTime - startTime);
        System.out.println("Binäre Suche letztes Element: " + passedTime + " ms.");
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new SearchAlgorithm();
    }

    /**************/
    /* MERGE SORT */
    /**************/

    public void mergeSort(int myArray[])
    {
        // Abbruchbedingung der Rekursion im Sinne von Teile-und-Herrsche-Algorithmen
        if (myArray.length == 1) return;

        // weist bei ungeraden Zahlen eine abgerundete Ganzzahl zu
        int indexHaelfte = myArray.length / 2;

        int[] linkeHaelfte = new int[indexHaelfte];

        // Die abgerundete Ganzzahl kann von der Länge abgezogen werden
        // um die Größe des rechten Arrays zu erhalten.
        int[] rechteHaelfte = new int[myArray.length - indexHaelfte];

        // Befülle die linke Hälfte 
        for (int i = 0; i < indexHaelfte; i++)
        {
            linkeHaelfte[i] = myArray[i];
        }

        // Befülle die rechte Hälfte 
        for (int i = indexHaelfte; i < myArray.length; i++)
        {
            rechteHaelfte[i - indexHaelfte] = myArray[i];
        }

        // Hier ist der rekursive Aufruf, indem die beiden Hälften an
        // die mergeSort-Methode selbst übergeben wird.
        this.mergeSort(linkeHaelfte);
        this.mergeSort(rechteHaelfte);

        // Hier werden die beiden Arrays wieder kombiniert (geMerged)
        this.merge(myArray, linkeHaelfte, rechteHaelfte);
    }

    private void merge(int[] mergeArray, int[] linkeHaelfte, int[] rechteHaelfte)
    {
        int iteratorLinks = 0, iteratorRechts = 0, iteratorMergeArray = 0;

        // Da die linke und reche Hälfte bereits sortiert sind, funktioniert die Zuweisung
        // in ein neues Array mit einer einzigen Schleife der Komplexität/Ordnung O(n).
        while (iteratorLinks < linkeHaelfte.length && iteratorRechts < rechteHaelfte.length)
        {
            if (linkeHaelfte[iteratorLinks] <= rechteHaelfte[iteratorRechts])
            {
                mergeArray[iteratorMergeArray] = linkeHaelfte[iteratorLinks];
                iteratorLinks++;
            }
            else
            {
                mergeArray[iteratorMergeArray] = rechteHaelfte[iteratorRechts];
                iteratorRechts++;
            }

            iteratorMergeArray++;
        }

        // Wenn noch Elemente in der linken Hälfte waren, die nicht verglichen wurden,
        // werden diese dem Merged Array hinzugefügt
        while (iteratorLinks < linkeHaelfte.length)
        {
            mergeArray[iteratorMergeArray] = linkeHaelfte[iteratorLinks];
            iteratorLinks++;
            iteratorMergeArray++;
        }

        // Wenn noch Elemente in der rechten Array-Hälfte waren, die nicht verglichen wurden,
        // werden diese dem Merged Array hinzugefügt
        while (iteratorRechts < rechteHaelfte.length)
        {
            mergeArray[iteratorMergeArray] = rechteHaelfte[iteratorRechts];
            iteratorRechts++;
            iteratorMergeArray++;
        }
    }
}

Ausgabe

Lineare Suche
=============
Der Array-Element mit dem Inhalt '23' wurde nicht gefunden in myArray[]. Lineare Suche not found: 20969800 ms.
Der Array-Element mit dem Inhalt '22' befindet sich am Index 0 von myArray[]. Lineare Suche Best-Case: 9613200 ms.
Der Array-Element mit dem Inhalt '3' befindet sich am Index 5 von myArray[]. Lineare Suche Average-Case: 337400 ms.
Der Array-Element mit dem Inhalt '1' befindet sich am Index 10 von myArray[]. Lineare Suche Worst-Case: 270200 ms.

Binäre Suche
============
Der Array-Element mit dem Inhalt '23' wurde nicht gefunden in myArray[]. Binäre Suche not found: 206800 ms.
Der Array-Element mit dem Inhalt '22' befindet sich am Index 10 von myArray[]. Binäre Suche erstes Element: 271400 ms.
Der Array-Element mit dem Inhalt '3' befindet sich am Index 2 von myArray[]. Binäre Suche mittleres Element: 306700 ms.
Der Array-Element mit dem Inhalt '1' befindet sich am Index 0 von myArray[]. Binäre Suche letztes Element: 302800 ms.

Komplexität: O-Notation (Ordnung)

Die Komplexität der binären Suche wird mit

beschrieben, wobei die Komplexität des vorangegangenen Merge-Sort-Algorithmus mitgerechnet werden muss, da die binäre Suche nur auf einem binären Datenbestand funktioniert. Somit ergibt sich

, wobei die additiven Bestandteile log(n) wegfallen. Somit ergibt sich im vorliegenden Falle die Komplexität O(n*log(n)) wegen der vorangegangen Sortierung. Ist diese nicht notwendig bleibt es bei der O-Notation O(log(n)).

Algorithmen und Datenstrukturen: O-Notation / Komplexität der rekursiven Fakultät

Der Algorithmus

Bei der rekursiven Fakultät handelt es sich um einen rekursiven Funktionsaufruf:

package AlgoDat;

public class RekursiveFakultaet {
    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static RekursiveFakultaet program;

    public long berechneFakultaet(int teilFakultaet)
    {
        // Abbruchbedingung der Rekursion wenn 1 erreicht ist
        if (teilFakultaet == 1) return 1;

        // Multipliziere rekursiv f(n) = n * f(n - 1) bis 1
        return teilFakultaet * berechneFakultaet(teilFakultaet - 1);
    }

    // Konstruktor
    public RekursiveFakultaet()
    {
        System.out.println(this.berechneFakultaet(25) + "");        
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new RekursiveFakultaet();
    }
}

Ausgabe

7034535277573963776

Komplexität: O-Notation (Ordnung)

Der rekursive Aufruf dieser Art kann als primitiv rekursiven Aufruf gezählt werden und besitzt die lineare Komplexität / O-Notation:

Dies bedeutet, dass sich die Laufzeit proportional mit der Anzahl der zu leistenden Multiplikationen ändern.

Algorithmen und Datenstrukturen: Der Merge Sort in Java

Der Algorithmus

Der MergeSort-Algorithmus ist ein stabiler Sortieralgorithmus nach dem Teile-und-Herrsche-Prinzip. Im ersten Teil wird das Array rekursiv so lange halbiert, bis in jeder Liste nur noch 1 Element vorhanden ist. Bei einer Liste mit einem Element geht man davon aus, dass die Liste automatisch als sortiert gilt. Danach können alle nachfolgenden Operationen von zwei sortierten Listen ausgehen, wodurch weniger Operationen beim Zusammenführen ausreichen um ein neues sortiertes Array zu erhalten.

Im zweiten Teil werden die bereits sortierten Listenhälften verglichen und mit der Komplexität O(n) je rekursiver Iteration verglichen und zusammengeführt (siehe den nachfolgenden JAVA Code).

package AlgoDat;

public class MergeSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};

    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static MergeSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    public void mergeSort(int myArray[])
    {
        // zunächst wird das Array ab der Hälfte in zwei
        // Arrays links und rechts geteilt, das passiert
        // rekursiv ... und zwar so lange bis jedes Element
        // für sich nur noch 1x vorhanden ist (Teile-Herrsche-Prinzip).
        // Das Teilen ist damit erledigt und nun sollte da
        // Problem dadurch beherrschbarer werden -> nun 
        // werden die Einzelelemente wieder in Arrays sortiert. 
        // Die Abbruchbedingung der Rekursion ist, wenn die Liste 
        // nur noch ein einziges Element hat, wobei die Liste bei
        // einem einzigem Element als sortiert gilt.
        if (myArray.length == 1) return;

        // weist bei ungeraden Zahlen eine abgerundete Ganzzahl zu
        int indexHaelfte = myArray.length / 2;

        int[] linkeHaelfte = new int[indexHaelfte];

        // Die abgerundete Ganzzahl kann von der Länge abgezogen werden
        // um die Größe des rechten Arrays zu erhalten.
        int[] rechteHaelfte = new int[myArray.length - indexHaelfte];

        // Befülle die linke Hälfte 
        for (int i = 0; i < indexHaelfte; i++)
        {
            linkeHaelfte[i] = myArray[i];
        }

        // Befülle die rechte Hälfte 
        for (int i = indexHaelfte; i < myArray.length; i++)
        {
            rechteHaelfte[i - indexHaelfte] = myArray[i];
        }

        // Hier ist der rekursive Aufruf, indem die beiden Hälften an
        // die mergeSort-Methode selbst übergeben wird.
        this.mergeSort(linkeHaelfte);
        this.mergeSort(rechteHaelfte);

        // Hier werden die beiden Arrays wieder kombiniert (geMerged)
        this.merge(myArray, linkeHaelfte, rechteHaelfte);
    }

    private void merge(int[] mergeArray, int[] linkeHaelfte, int[] rechteHaelfte)
    {
        System.out.print("Vergleiche linke Hälfte: ");
        this.OutputOfIntArray(linkeHaelfte);
        System.out.print("mit rechter Hälfte ");
        this.OutputOfIntArray(rechteHaelfte);

        int iteratorLinks = 0, iteratorRechts = 0, iteratorMergeArray = 0;

        // Da die linke und reche Hälfte bereits sortiert sind, funktioniert die Zuweisung
        // in ein neues Array mit einer einzigen Schleife der Komplexität/Ordnung O(n).
        while (iteratorLinks < linkeHaelfte.length && iteratorRechts < rechteHaelfte.length)
        {
            if (linkeHaelfte[iteratorLinks] <= rechteHaelfte[iteratorRechts])
            {
                mergeArray[iteratorMergeArray] = linkeHaelfte[iteratorLinks];
                iteratorLinks++;
            }
            else
            {
                mergeArray[iteratorMergeArray] = rechteHaelfte[iteratorRechts];
                iteratorRechts++;
            }

            iteratorMergeArray++;
        }

        // Wenn noch Elemente in der linken Hälfte waren, die nicht verglichen wurden,
        // werden diese dem Merged Array hinzugefügt
        while (iteratorLinks < linkeHaelfte.length)
        {
            mergeArray[iteratorMergeArray] = linkeHaelfte[iteratorLinks];
            iteratorLinks++;
            iteratorMergeArray++;
        }

        // Wenn noch Elemente in der rechten Array-Hälfte waren, die nicht verglichen wurden,
        // werden diese dem Merged Array hinzugefügt
        while (iteratorRechts < rechteHaelfte.length)
        {
            mergeArray[iteratorMergeArray] = rechteHaelfte[iteratorRechts];
            iteratorRechts++;
            iteratorMergeArray++;
        }
    }

    // Konstruktor
    public MergeSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);

        // Wir lagern alles weitere in eine eigene Methode aus, 
        // da MergeSort ein rekursiver Algorithmus ist, dessen 
        // Funktion aufgerufen werden muss und beeginnen mit dem 
        // unsortierten Array
        this.mergeSort(myArray);

        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new MergeSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Vergleiche linke Hälfte: 22
mit rechter Hälfte 6
Vergleiche linke Hälfte: 4
mit rechter Hälfte 10
Vergleiche linke Hälfte: 2
mit rechter Hälfte 4;10
Vergleiche linke Hälfte: 6;22
mit rechter Hälfte 2;4;10
Vergleiche linke Hälfte: 9
mit rechter Hälfte 7
Vergleiche linke Hälfte: 3
mit rechter Hälfte 7;9
Vergleiche linke Hälfte: 8
mit rechter Hälfte 1
Vergleiche linke Hälfte: 5
mit rechter Hälfte 1;8
Vergleiche linke Hälfte: 3;7;9
mit rechter Hälfte 1;5;8
Vergleiche linke Hälfte: 2;4;6;10;22
mit rechter Hälfte 1;3;5;7;8;9
Nachher: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

Der MergeSort besteht aus 3 Teilen, die sich zu der Gesamtkomplexität zusammensetzen.

Teil 1: (Rekursives) Teilen

Wenn wir ein Array der Größe n in zwei Hälften teilen, benötigen wir

Schritte. Hierbei handelt es sich um den Logarithmus dualis, also den Logarithmus zur Basis 2 (wessen Basis für die 2 Hälften spricht, in die aufgeteilt wird). Dies liegt also daran, dass wir die Liste in jeder Rekursionsebene halbieren. Wir fragen hier also mit welcher Zahl man 2 potenzieren muss um n zu erhalten.

Wenn wir in dem unsortierten Array 11 Elemente haben, würden wir also fragen, mit welcher Zahl wir 2 potenzieren müssen um 11 zu erhalten. Den Exponenten den wir hier erhalten wäre 4:

Wir runden die Kommazahl immer auf die nächste volle Zahl auf, da wir keine halben Schritte machen können. Die Zahl 4 entspricht hier auch der Rekursionstiefe, die benötigt wird bis der aktuelle Rekursions-Heap nur noch aus einem Element bekommt, was zu Abbruch der Rekursion führt.

Der erste Teil besitzt somit die Ordnung:

Teil 2 und 3: Sortieren und Mergen

Der Schritt des Zusammenführens (des Mergens) beider Liste ist mit der Sortierung kombiniert. Hier wird vorausgesetzt dass bereits sortierte Listenhälften vorliegen, da man zwei bereits sortierte Arrays mit der Komplexität n vergleichen kann. Beim Zusammenführen der sortierten Teillisten benötigen wir

Zeit. Dieser Schritt ist linear abhängig von der Gesamtanzahl der Elemente.

Gesamt-Komplexität

Somit ergibt sich die Gesamtkomplexität:

im Worst-, Normal- und Best-Case.

Algorithmen und Datenstrukturen: Der original Bubble Sort in Java

Der Algorithmus

Beim „Bubble Sort“ markiert die äußere Schleife das letzte Element des noch unsortierten Bereichs, während die innere Schleife anfangs das erste Element markiert und bei jeder Iteration bis zu dem Element, was die äußere Schleife markiert, läuft. Jedes Element der aktuellen Iteration der inneren Schleife wird mit dem Nachfolgeelement der aktuellen Iteration verglichen. Ist ein Element kleiner/größer (je nachdem wie der Vergleichsoperator „gedreht“ ist) wird getauscht. Auf diese Weise „blubbert“ die größte Zahl immer bis zum Anfang des sortierten Bereichs, welchen die äußere Schleife markiert, nach oben.

package AlgoDat;

public class BubbleSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};

    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static BubbleSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    // Konstruktor
    public BubbleSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);

        // Äußere Schleife: Laufe das zu sortierende Array von Rechts nach links durch,
        // damit der bereits sortierte Bereich rechts wächst
        for (int i = myArray.length; i > 1 ; i--)
        {
            System.out.println("Iteration " + i);

            // Innere Schleife: Laufe das Array bis zum bereits sortierten Bereich der
            //                  äußeren Schleife durch
            for (int j = 0; j < i - 1; j++)
            {
                // Tausche die Array-Inhalte 
                if (myArray[j] > myArray[j + 1])
                {
                    this.vertausche(myArray, j, j + 1);

                    System.out.print("Tausche: ");
                    this.OutputOfIntArray(myArray);
                }
            }
        }

        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
    }

    public void vertausche(int[] arrayToSwap, int idx1, int idx2)
    {
        int swapVar = arrayToSwap[idx1];
        arrayToSwap[idx1] = arrayToSwap[idx2];
        arrayToSwap[idx2] = swapVar;
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new BubbleSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Iteration 11
Tausche: 6;22;2;4;10;3;9;7;5;8;1
Tausche: 6;2;22;4;10;3;9;7;5;8;1
Tausche: 6;2;4;22;10;3;9;7;5;8;1
Tausche: 6;2;4;10;22;3;9;7;5;8;1
Tausche: 6;2;4;10;3;22;9;7;5;8;1
Tausche: 6;2;4;10;3;9;22;7;5;8;1
Tausche: 6;2;4;10;3;9;7;22;5;8;1
Tausche: 6;2;4;10;3;9;7;5;22;8;1
Tausche: 6;2;4;10;3;9;7;5;8;22;1
Tausche: 6;2;4;10;3;9;7;5;8;1;22
Iteration 10
Tausche: 2;6;4;10;3;9;7;5;8;1;22
Tausche: 2;4;6;10;3;9;7;5;8;1;22
Tausche: 2;4;6;3;10;9;7;5;8;1;22
Tausche: 2;4;6;3;9;10;7;5;8;1;22
Tausche: 2;4;6;3;9;7;10;5;8;1;22
Tausche: 2;4;6;3;9;7;5;10;8;1;22
Tausche: 2;4;6;3;9;7;5;8;10;1;22
Tausche: 2;4;6;3;9;7;5;8;1;10;22
Iteration 9
Tausche: 2;4;3;6;9;7;5;8;1;10;22
Tausche: 2;4;3;6;7;9;5;8;1;10;22
Tausche: 2;4;3;6;7;5;9;8;1;10;22
Tausche: 2;4;3;6;7;5;8;9;1;10;22
Tausche: 2;4;3;6;7;5;8;1;9;10;22
Iteration 8
Tausche: 2;3;4;6;7;5;8;1;9;10;22
Tausche: 2;3;4;6;5;7;8;1;9;10;22
Tausche: 2;3;4;6;5;7;1;8;9;10;22
Iteration 7
Tausche: 2;3;4;5;6;7;1;8;9;10;22
Tausche: 2;3;4;5;6;1;7;8;9;10;22
Iteration 6
Tausche: 2;3;4;5;1;6;7;8;9;10;22
Iteration 5
Tausche: 2;3;4;1;5;6;7;8;9;10;22
Iteration 4
Tausche: 2;3;1;4;5;6;7;8;9;10;22
Iteration 3
Tausche: 2;1;3;4;5;6;7;8;9;10;22
Iteration 2
Tausche: 1;2;3;4;5;6;7;8;9;10;22
Nachher: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

Diese Version des Bubble Sort-Algorithmus hat im Worst-, Average- und Best-Case eine Laufzeitkomplexität von O(n²)

Es gibt eine optimierte Version des Bubble Sort Algorithmus, der hier im Blog im Artikel „Der optimierte Bubble Sort in Java“ vorgestellt wird.

Algorithmen und Datenstrukturen: Der Selection Sort in Java

Der Algorithmus

package AlgoDat;

public class SelectionSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};

    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static SelectionSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    // Konstruktor
    public SelectionSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);

        // Laufe das zu sortierende Array von Anfang bis Ende durch
        for (int idxSortierterBereich = 0; idxSortierterBereich < myArray.length - 1 ; idxSortierterBereich++)
        {
            // Starte an der Index-Position der äußersten Schleife - davor ist schon alles sortiert
            int indexPivotElement = idxSortierterBereich;

            for (int idxUnsortierterBereich = idxSortierterBereich + 1; idxUnsortierterBereich < myArray.length; idxUnsortierterBereich++)
            {
                // ... und merke dir das kleinste Element
                if (myArray[indexPivotElement] > myArray[idxUnsortierterBereich])
                {
                    indexPivotElement = idxUnsortierterBereich;
                }
            }

            // Dieser Code tauscht das neu gefundene Minimum mit dem Element am aktuellen Index der äußeren Schleife                
            int swapVar = myArray[indexPivotElement];
            myArray[indexPivotElement] = myArray[idxSortierterBereich];
            myArray[idxSortierterBereich] = swapVar;

            System.out.print("Tausche: ");
            this.OutputOfIntArray(myArray);
        }

        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new SelectionSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Tausche: 1;6;2;4;10;3;9;7;5;8;22
Tausche: 1;2;6;4;10;3;9;7;5;8;22
Tausche: 1;2;3;4;10;6;9;7;5;8;22
Tausche: 1;2;3;4;10;6;9;7;5;8;22
Tausche: 1;2;3;4;5;6;9;7;10;8;22
Tausche: 1;2;3;4;5;6;9;7;10;8;22
Tausche: 1;2;3;4;5;6;7;9;10;8;22
Tausche: 1;2;3;4;5;6;7;8;10;9;22
Tausche: 1;2;3;4;5;6;7;8;9;10;22
Tausche: 1;2;3;4;5;6;7;8;9;10;22
Nachher: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

Zwei verschaltete Schleifen.
Die äußere Schleife läuft von 1 bis n;
Die innere Schleife läuft vom Element der äußeren Schleife bis Schluss -> also n/2, da der Bereich immer kleiner wird.

O(T(n)) = O(n²)

Algorithmen und Datenstrukturen: Der Insertion Sort in Java

Der Algorithmus

Markant sind die zwei verschachtelten Schleifen, wobei die innere Schleife meistens eine While-Schleife mit 2 Bedingungen ist. Ein Index, welcher die Position der Trennung vom sortierten (links) und vom unsortierten (rechts) Bereich präsentiert, wird runtergezählt und das Array-Element an der Index-Position entspricht nach Ende der Schleife der Array-Position, mit der ein gemerktes Element getauscht werden kann. Während der sortierte Bereich (immer links) mit dem ersten Element des unsortierten Bereichs (immer rechts), welches sich gemerkt wird, verglichen wird, werden alle Elemente bis zu diesem Punkt um eins nach rechts gerückt. Dadurch existiert die zu tauschende Position nach diesem Schritt zwei Mal und wird durch das gemerkte Element ausgetauscht.

Die zweite Bedingung der inneren While-Schleife verhindert, das der runterzählende Index negativ wird.

package AlgoDat;

class InsertionSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};
    
    // Hält die Klasse InsertionSort als instanziertes Objekt
    @SuppressWarnings("unused")
    private static InsertionSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    // Konstruktor
    public InsertionSort()
    {
        this.OutputOfIntArray(myArray);

        // Bei 1 beginnen, da das Element mit dem Index 0 bereits als sortiert gilt 
        for (int idxSortierterBereich = 1; idxSortierterBereich < myArray.length; idxSortierterBereich++)
        {
            // Merke dir das erste Element vom unsortierten Bereich
            int swapVar = myArray[idxSortierterBereich];
            System.out.println("Gemerkt vor dem Aufrücken: " + swapVar);

            // Das erste unsortierte Element auf der rechten Seite wird in den bereits sortierten Bereich 
            // auf der linken Seite eingefügt, womit der unsortierte Bereich immer weiter nach rechts rückt
            // und dann verschwindet.
            int idxUnsortierterBereich = idxSortierterBereich; 
            System.out.println("Der unsortierte Bereich beginnt bei Index: " + idxUnsortierterBereich);

            // Laufe im Array von rechts nach links, so lange wie vorige Element noch größer wie 
            // das erste Element vom unsortierten Bereich ist und der Bereich nicht negativ wird
            while (idxUnsortierterBereich > 0 && myArray[idxUnsortierterBereich - 1] > swapVar)
            {
                // Alles eins nach rechts im Array rücken bis zum bereits sortierten Bereich
                myArray[idxUnsortierterBereich] = myArray[idxUnsortierterBereich - 1] ;
                idxUnsortierterBereich--;

                System.out.print("Nach rechts aufrücken: ");
                this.OutputOfIntArray(myArray);
            }

            System.out.println("Tausche Stelle " + (idxUnsortierterBereich + 1) + " (" + myArray[idxUnsortierterBereich] + 
            ") mit gemerkter Stelle " + (idxSortierterBereich + 1) + " (" + swapVar + ")");

            myArray[idxUnsortierterBereich] = swapVar;

            System.out.print("Getauscht: ");
            this.OutputOfIntArray(myArray);
        }
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new InsertionSort();
    }
}

Ausgabe

22;6;2;4;10;3;9;7;5;8;1
Gemerkt vor dem Aufrücken: 6
Der unsortierte Bereich beginnt bei Index: 1
Nach rechts aufrücken: 22;22;2;4;10;3;9;7;5;8;1
Tausche Stelle 1 (22) mit gemerkter Stelle 2 (6)
Getauscht: 6;22;2;4;10;3;9;7;5;8;1
Gemerkt vor dem Aufrücken: 2
Der unsortierte Bereich beginnt bei Index: 2
Nach rechts aufrücken: 6;22;22;4;10;3;9;7;5;8;1
Nach rechts aufrücken: 6;6;22;4;10;3;9;7;5;8;1
Tausche Stelle 1 (6) mit gemerkter Stelle 3 (2)
Getauscht: 2;6;22;4;10;3;9;7;5;8;1
Gemerkt vor dem Aufrücken: 4
Der unsortierte Bereich beginnt bei Index: 3
Nach rechts aufrücken: 2;6;22;22;10;3;9;7;5;8;1
Nach rechts aufrücken: 2;6;6;22;10;3;9;7;5;8;1
Tausche Stelle 2 (6) mit gemerkter Stelle 4 (4)
Getauscht: 2;4;6;22;10;3;9;7;5;8;1
Gemerkt vor dem Aufrücken: 10
Der unsortierte Bereich beginnt bei Index: 4
Nach rechts aufrücken: 2;4;6;22;22;3;9;7;5;8;1
Tausche Stelle 4 (22) mit gemerkter Stelle 5 (10)
Getauscht: 2;4;6;10;22;3;9;7;5;8;1
Gemerkt vor dem Aufrücken: 3
Der unsortierte Bereich beginnt bei Index: 5
Nach rechts aufrücken: 2;4;6;10;22;22;9;7;5;8;1
Nach rechts aufrücken: 2;4;6;10;10;22;9;7;5;8;1
Nach rechts aufrücken: 2;4;6;6;10;22;9;7;5;8;1
Nach rechts aufrücken: 2;4;4;6;10;22;9;7;5;8;1
Tausche Stelle 2 (4) mit gemerkter Stelle 6 (3)
Getauscht: 2;3;4;6;10;22;9;7;5;8;1
Gemerkt vor dem Aufrücken: 9
Der unsortierte Bereich beginnt bei Index: 6
Nach rechts aufrücken: 2;3;4;6;10;22;22;7;5;8;1
Nach rechts aufrücken: 2;3;4;6;10;10;22;7;5;8;1
Tausche Stelle 5 (10) mit gemerkter Stelle 7 (9)
Getauscht: 2;3;4;6;9;10;22;7;5;8;1
Gemerkt vor dem Aufrücken: 7
Der unsortierte Bereich beginnt bei Index: 7
Nach rechts aufrücken: 2;3;4;6;9;10;22;22;5;8;1
Nach rechts aufrücken: 2;3;4;6;9;10;10;22;5;8;1
Nach rechts aufrücken: 2;3;4;6;9;9;10;22;5;8;1
Tausche Stelle 5 (9) mit gemerkter Stelle 8 (7)
Getauscht: 2;3;4;6;7;9;10;22;5;8;1
Gemerkt vor dem Aufrücken: 5
Der unsortierte Bereich beginnt bei Index: 8
Nach rechts aufrücken: 2;3;4;6;7;9;10;22;22;8;1
Nach rechts aufrücken: 2;3;4;6;7;9;10;10;22;8;1
Nach rechts aufrücken: 2;3;4;6;7;9;9;10;22;8;1
Nach rechts aufrücken: 2;3;4;6;7;7;9;10;22;8;1
Nach rechts aufrücken: 2;3;4;6;6;7;9;10;22;8;1
Tausche Stelle 4 (6) mit gemerkter Stelle 9 (5)
Getauscht: 2;3;4;5;6;7;9;10;22;8;1
Gemerkt vor dem Aufrücken: 8
Der unsortierte Bereich beginnt bei Index: 9
Nach rechts aufrücken: 2;3;4;5;6;7;9;10;22;22;1
Nach rechts aufrücken: 2;3;4;5;6;7;9;10;10;22;1
Nach rechts aufrücken: 2;3;4;5;6;7;9;9;10;22;1
Tausche Stelle 7 (9) mit gemerkter Stelle 10 (8)
Getauscht: 2;3;4;5;6;7;8;9;10;22;1
Gemerkt vor dem Aufrücken: 1
Der unsortierte Bereich beginnt bei Index: 10
Nach rechts aufrücken: 2;3;4;5;6;7;8;9;10;22;22
Nach rechts aufrücken: 2;3;4;5;6;7;8;9;10;10;22
Nach rechts aufrücken: 2;3;4;5;6;7;8;9;9;10;22
Nach rechts aufrücken: 2;3;4;5;6;7;8;8;9;10;22
Nach rechts aufrücken: 2;3;4;5;6;7;7;8;9;10;22
Nach rechts aufrücken: 2;3;4;5;6;6;7;8;9;10;22
Nach rechts aufrücken: 2;3;4;5;5;6;7;8;9;10;22
Nach rechts aufrücken: 2;3;4;4;5;6;7;8;9;10;22
Nach rechts aufrücken: 2;3;3;4;5;6;7;8;9;10;22
Nach rechts aufrücken: 2;2;3;4;5;6;7;8;9;10;22
Tausche Stelle 1 (2) mit gemerkter Stelle 11 (1)
Getauscht: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

O(T(n)) = O(n^2/2+n/2-n) = O(n^2/2) = O (n^2)

Die äußere Schleife läuft von 1 bis n-1, während die innere While-Schleife vom ersten Element des unsortierten Bereichs bis zu der Stelle der richtige Einfügeposition läuft.

Äußere Schleife: Iteriert n-1 mal.
Innere Schleife: Iteriert 1x für Element 1, 2x für Element 2, 3x für Element 3, … n mal für Element n, was zu einer Laufzeit von

führt. Daraus folgt:

Additive Bestandteile, Faktoren und Konstanten fallen bei der Bestimmung der Ordnung weg, daher ist die Ordnung O(n²). Die Domäne ist der dominante Teil der Ordnung – sie ist n² .