Schlagwort-Archive: Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen: Der optimierte Bubble Sort in Java

Der Algorithmus

Dieser Algorithmus ist eine Erweiterung des normalen Bubble Sort Algorithmus. Wie dieser wird hierbei ein Array durchlaufen und das Element der aktuellen Iteration mit dem Nachfolgeelement getauscht, wenn dieses kleiner ist. Dadurch blubbern die Zahlen vom Array-Anfang bis zum Ende in einen sortierten Bereich auf der rechten Seite des Arrays nach oben.

Der optimierte Bubble Sort-Algorithmus bricht weitere Iterationen ab, wenn er in in seiner if-Bedingung nichts mehr zum Tauschen gefunden hat. Dies vermerkt er in einer bool-Variable, was die umgebende do…while-Schleife nutzt um den Algorithmus abzubrechen.

package AlgoDat;

public class OptimizedBubbleSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};

    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static OptimizedBubbleSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    // Konstruktor
    public OptimizedBubbleSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);

        // Da wir eine do .. while-Schleife nun nutzen,
        // zählen wir einen Index darin runter um diesen
        // im Array jederzeit adressieren zu können.
        int sortierterBereichRechts = myArray.length;

        // Wenn in einer Iteration nix getauscht wurde
        // wird das für alle weiteren auch der Fall sein.
        // In dem Fall kann der Algorithmus enden.
        boolean hatteNochWasZuTun = false;

        do
        {
            // Am Anfang gibts nix zu tun
            hatteNochWasZuTun = false;   

            System.out.println("Iteration: " + (myArray.length - sortierterBereichRechts + 1));

            for (int i = 0; i < sortierterBereichRechts - 1; i++)
            {
                if (myArray[i] > myArray[i + 1])
                {
                    this.vertausche(myArray, i, i + 1);
                    System.out.print("Tausche: ");
                    this.OutputOfIntArray(myArray);
                    hatteNochWasZuTun = true;
                }
            }
            
            // Der sortierte Bereich wächst
            sortierterBereichRechts--;
        }
        while (hatteNochWasZuTun);

        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
    }

    public void vertausche(int[] arrayToSwap, int idx1, int idx2)
    {
        int swapVar = arrayToSwap[idx1];
        arrayToSwap[idx1] = arrayToSwap[idx2];
        arrayToSwap[idx2] = swapVar;
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new OptimizedBubbleSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Iteration: 1
Tausche: 6;22;2;4;10;3;9;7;5;8;1
Tausche: 6;2;22;4;10;3;9;7;5;8;1
Tausche: 6;2;4;22;10;3;9;7;5;8;1
Tausche: 6;2;4;10;22;3;9;7;5;8;1
Tausche: 6;2;4;10;3;22;9;7;5;8;1
Tausche: 6;2;4;10;3;9;22;7;5;8;1
Tausche: 6;2;4;10;3;9;7;22;5;8;1
Tausche: 6;2;4;10;3;9;7;5;22;8;1
Tausche: 6;2;4;10;3;9;7;5;8;22;1
Tausche: 6;2;4;10;3;9;7;5;8;1;22
Iteration: 2
Tausche: 2;6;4;10;3;9;7;5;8;1;22
Tausche: 2;4;6;10;3;9;7;5;8;1;22
Tausche: 2;4;6;3;10;9;7;5;8;1;22
Tausche: 2;4;6;3;9;10;7;5;8;1;22
Tausche: 2;4;6;3;9;7;10;5;8;1;22
Tausche: 2;4;6;3;9;7;5;10;8;1;22
Tausche: 2;4;6;3;9;7;5;8;10;1;22
Tausche: 2;4;6;3;9;7;5;8;1;10;22
Iteration: 3
Tausche: 2;4;3;6;9;7;5;8;1;10;22
Tausche: 2;4;3;6;7;9;5;8;1;10;22
Tausche: 2;4;3;6;7;5;9;8;1;10;22
Tausche: 2;4;3;6;7;5;8;9;1;10;22
Tausche: 2;4;3;6;7;5;8;1;9;10;22
Iteration: 4
Tausche: 2;3;4;6;7;5;8;1;9;10;22
Tausche: 2;3;4;6;5;7;8;1;9;10;22
Tausche: 2;3;4;6;5;7;1;8;9;10;22
Iteration: 5
Tausche: 2;3;4;5;6;7;1;8;9;10;22
Tausche: 2;3;4;5;6;1;7;8;9;10;22
Iteration: 6
Tausche: 2;3;4;5;1;6;7;8;9;10;22
Iteration: 7
Tausche: 2;3;4;1;5;6;7;8;9;10;22
Iteration: 8
Tausche: 2;3;1;4;5;6;7;8;9;10;22
Iteration: 9
Tausche: 2;1;3;4;5;6;7;8;9;10;22
Iteration: 10
Tausche: 1;2;3;4;5;6;7;8;9;10;22
Iteration: 11
Nachher: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

Worst- und Average-Case

Wie beim normalen Bubble Sort beträgt die Laufzeit-Komplexität im normalen und durchschnittlichen Fall O(n²).

Best-Case

Im Best-Case bricht der Algorithmus aber bereits nach einer Iteration ab, was einer Laufzeitkomplexität von O(n) entspricht.

Algorithmen und Datenstrukturen: Der Merge Sort in Java

Der Algorithmus

Der MergeSort-Algorithmus ist ein stabiler Sortieralgorithmus nach dem Teile-und-Herrsche-Prinzip. Im ersten Teil wird das Array rekursiv so lange halbiert, bis in jeder Liste nur noch 1 Element vorhanden ist. Bei einer Liste mit einem Element geht man davon aus, dass die Liste automatisch als sortiert gilt. Danach können alle nachfolgenden Operationen von zwei sortierten Listen ausgehen, wodurch weniger Operationen beim Zusammenführen ausreichen um ein neues sortiertes Array zu erhalten.

Im zweiten Teil werden die bereits sortierten Listenhälften verglichen und mit der Komplexität O(n) je rekursiver Iteration verglichen und zusammengeführt (siehe den nachfolgenden JAVA Code).

package AlgoDat;

public class MergeSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};

    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static MergeSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    public void mergeSort(int myArray[])
    {
        // zunächst wird das Array ab der Hälfte in zwei
        // Arrays links und rechts geteilt, das passiert
        // rekursiv ... und zwar so lange bis jedes Element
        // für sich nur noch 1x vorhanden ist (Teile-Herrsche-Prinzip).
        // Das Teilen ist damit erledigt und nun sollte da
        // Problem dadurch beherrschbarer werden -> nun 
        // werden die Einzelelemente wieder in Arrays sortiert. 
        // Die Abbruchbedingung der Rekursion ist, wenn die Liste 
        // nur noch ein einziges Element hat, wobei die Liste bei
        // einem einzigem Element als sortiert gilt.
        if (myArray.length == 1) return;

        // weist bei ungeraden Zahlen eine abgerundete Ganzzahl zu
        int indexHaelfte = myArray.length / 2;

        int[] linkeHaelfte = new int[indexHaelfte];

        // Die abgerundete Ganzzahl kann von der Länge abgezogen werden
        // um die Größe des rechten Arrays zu erhalten.
        int[] rechteHaelfte = new int[myArray.length - indexHaelfte];

        // Befülle die linke Hälfte 
        for (int i = 0; i < indexHaelfte; i++)
        {
            linkeHaelfte[i] = myArray[i];
        }

        // Befülle die rechte Hälfte 
        for (int i = indexHaelfte; i < myArray.length; i++)
        {
            rechteHaelfte[i - indexHaelfte] = myArray[i];
        }

        // Hier ist der rekursive Aufruf, indem die beiden Hälften an
        // die mergeSort-Methode selbst übergeben wird.
        this.mergeSort(linkeHaelfte);
        this.mergeSort(rechteHaelfte);

        // Hier werden die beiden Arrays wieder kombiniert (geMerged)
        this.merge(myArray, linkeHaelfte, rechteHaelfte);
    }

    private void merge(int[] mergeArray, int[] linkeHaelfte, int[] rechteHaelfte)
    {
        System.out.print("Vergleiche linke Hälfte: ");
        this.OutputOfIntArray(linkeHaelfte);
        System.out.print("mit rechter Hälfte ");
        this.OutputOfIntArray(rechteHaelfte);

        int iteratorLinks = 0, iteratorRechts = 0, iteratorMergeArray = 0;

        // Da die linke und reche Hälfte bereits sortiert sind, funktioniert die Zuweisung
        // in ein neues Array mit einer einzigen Schleife der Komplexität/Ordnung O(n).
        while (iteratorLinks < linkeHaelfte.length && iteratorRechts < rechteHaelfte.length)
        {
            if (linkeHaelfte[iteratorLinks] <= rechteHaelfte[iteratorRechts])
            {
                mergeArray[iteratorMergeArray] = linkeHaelfte[iteratorLinks];
                iteratorLinks++;
            }
            else
            {
                mergeArray[iteratorMergeArray] = rechteHaelfte[iteratorRechts];
                iteratorRechts++;
            }

            iteratorMergeArray++;
        }

        // Wenn noch Elemente in der linken Hälfte waren, die nicht verglichen wurden,
        // werden diese dem Merged Array hinzugefügt
        while (iteratorLinks < linkeHaelfte.length)
        {
            mergeArray[iteratorMergeArray] = linkeHaelfte[iteratorLinks];
            iteratorLinks++;
            iteratorMergeArray++;
        }

        // Wenn noch Elemente in der rechten Array-Hälfte waren, die nicht verglichen wurden,
        // werden diese dem Merged Array hinzugefügt
        while (iteratorRechts < rechteHaelfte.length)
        {
            mergeArray[iteratorMergeArray] = rechteHaelfte[iteratorRechts];
            iteratorRechts++;
            iteratorMergeArray++;
        }
    }

    // Konstruktor
    public MergeSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);

        // Wir lagern alles weitere in eine eigene Methode aus, 
        // da MergeSort ein rekursiver Algorithmus ist, dessen 
        // Funktion aufgerufen werden muss und beeginnen mit dem 
        // unsortierten Array
        this.mergeSort(myArray);

        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new MergeSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Vergleiche linke Hälfte: 22
mit rechter Hälfte 6
Vergleiche linke Hälfte: 4
mit rechter Hälfte 10
Vergleiche linke Hälfte: 2
mit rechter Hälfte 4;10
Vergleiche linke Hälfte: 6;22
mit rechter Hälfte 2;4;10
Vergleiche linke Hälfte: 9
mit rechter Hälfte 7
Vergleiche linke Hälfte: 3
mit rechter Hälfte 7;9
Vergleiche linke Hälfte: 8
mit rechter Hälfte 1
Vergleiche linke Hälfte: 5
mit rechter Hälfte 1;8
Vergleiche linke Hälfte: 3;7;9
mit rechter Hälfte 1;5;8
Vergleiche linke Hälfte: 2;4;6;10;22
mit rechter Hälfte 1;3;5;7;8;9
Nachher: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

Der MergeSort besteht aus 3 Teilen, die sich zu der Gesamtkomplexität zusammensetzen.

Teil 1: (Rekursives) Teilen

Wenn wir ein Array der Größe n in zwei Hälften teilen, benötigen wir

Schritte. Hierbei handelt es sich um den Logarithmus dualis, also den Logarithmus zur Basis 2 (wessen Basis für die 2 Hälften spricht, in die aufgeteilt wird). Dies liegt also daran, dass wir die Liste in jeder Rekursionsebene halbieren. Wir fragen hier also mit welcher Zahl man 2 potenzieren muss um n zu erhalten.

Wenn wir in dem unsortierten Array 11 Elemente haben, würden wir also fragen, mit welcher Zahl wir 2 potenzieren müssen um 11 zu erhalten. Den Exponenten den wir hier erhalten wäre 4:

Wir runden die Kommazahl immer auf die nächste volle Zahl auf, da wir keine halben Schritte machen können. Die Zahl 4 entspricht hier auch der Rekursionstiefe, die benötigt wird bis der aktuelle Rekursions-Heap nur noch aus einem Element bekommt, was zu Abbruch der Rekursion führt.

Der erste Teil besitzt somit die Ordnung:

Teil 2 und 3: Sortieren und Mergen

Der Schritt des Zusammenführens (des Mergens) beider Liste ist mit der Sortierung kombiniert. Hier wird vorausgesetzt dass bereits sortierte Listenhälften vorliegen, da man zwei bereits sortierte Arrays mit der Komplexität n vergleichen kann. Beim Zusammenführen der sortierten Teillisten benötigen wir

Zeit. Dieser Schritt ist linear abhängig von der Gesamtanzahl der Elemente.

Gesamt-Komplexität

Somit ergibt sich die Gesamtkomplexität:

im Worst-, Normal- und Best-Case.

Algorithmen und Datenstrukturen: Der original Bubble Sort in Java

Der Algorithmus

Beim „Bubble Sort“ markiert die äußere Schleife das letzte Element des noch unsortierten Bereichs, während die innere Schleife anfangs das erste Element markiert und bei jeder Iteration bis zu dem Element, was die äußere Schleife markiert, läuft. Jedes Element der aktuellen Iteration der inneren Schleife wird mit dem Nachfolgeelement der aktuellen Iteration verglichen. Ist ein Element kleiner/größer (je nachdem wie der Vergleichsoperator „gedreht“ ist) wird getauscht. Auf diese Weise „blubbert“ die größte Zahl immer bis zum Anfang des sortierten Bereichs, welchen die äußere Schleife markiert, nach oben.

package AlgoDat;

public class BubbleSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};

    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static BubbleSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    // Konstruktor
    public BubbleSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);

        // Äußere Schleife: Laufe das zu sortierende Array von Rechts nach links durch,
        // damit der bereits sortierte Bereich rechts wächst
        for (int i = myArray.length; i > 1 ; i--)
        {
            System.out.println("Iteration " + i);

            // Innere Schleife: Laufe das Array bis zum bereits sortierten Bereich der
            //                  äußeren Schleife durch
            for (int j = 0; j < i - 1; j++)
            {
                // Tausche die Array-Inhalte 
                if (myArray[j] > myArray[j + 1])
                {
                    this.vertausche(myArray, j, j + 1);

                    System.out.print("Tausche: ");
                    this.OutputOfIntArray(myArray);
                }
            }
        }

        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
    }

    public void vertausche(int[] arrayToSwap, int idx1, int idx2)
    {
        int swapVar = arrayToSwap[idx1];
        arrayToSwap[idx1] = arrayToSwap[idx2];
        arrayToSwap[idx2] = swapVar;
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new BubbleSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Iteration 11
Tausche: 6;22;2;4;10;3;9;7;5;8;1
Tausche: 6;2;22;4;10;3;9;7;5;8;1
Tausche: 6;2;4;22;10;3;9;7;5;8;1
Tausche: 6;2;4;10;22;3;9;7;5;8;1
Tausche: 6;2;4;10;3;22;9;7;5;8;1
Tausche: 6;2;4;10;3;9;22;7;5;8;1
Tausche: 6;2;4;10;3;9;7;22;5;8;1
Tausche: 6;2;4;10;3;9;7;5;22;8;1
Tausche: 6;2;4;10;3;9;7;5;8;22;1
Tausche: 6;2;4;10;3;9;7;5;8;1;22
Iteration 10
Tausche: 2;6;4;10;3;9;7;5;8;1;22
Tausche: 2;4;6;10;3;9;7;5;8;1;22
Tausche: 2;4;6;3;10;9;7;5;8;1;22
Tausche: 2;4;6;3;9;10;7;5;8;1;22
Tausche: 2;4;6;3;9;7;10;5;8;1;22
Tausche: 2;4;6;3;9;7;5;10;8;1;22
Tausche: 2;4;6;3;9;7;5;8;10;1;22
Tausche: 2;4;6;3;9;7;5;8;1;10;22
Iteration 9
Tausche: 2;4;3;6;9;7;5;8;1;10;22
Tausche: 2;4;3;6;7;9;5;8;1;10;22
Tausche: 2;4;3;6;7;5;9;8;1;10;22
Tausche: 2;4;3;6;7;5;8;9;1;10;22
Tausche: 2;4;3;6;7;5;8;1;9;10;22
Iteration 8
Tausche: 2;3;4;6;7;5;8;1;9;10;22
Tausche: 2;3;4;6;5;7;8;1;9;10;22
Tausche: 2;3;4;6;5;7;1;8;9;10;22
Iteration 7
Tausche: 2;3;4;5;6;7;1;8;9;10;22
Tausche: 2;3;4;5;6;1;7;8;9;10;22
Iteration 6
Tausche: 2;3;4;5;1;6;7;8;9;10;22
Iteration 5
Tausche: 2;3;4;1;5;6;7;8;9;10;22
Iteration 4
Tausche: 2;3;1;4;5;6;7;8;9;10;22
Iteration 3
Tausche: 2;1;3;4;5;6;7;8;9;10;22
Iteration 2
Tausche: 1;2;3;4;5;6;7;8;9;10;22
Nachher: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

Diese Version des Bubble Sort-Algorithmus hat im Worst-, Average- und Best-Case eine Laufzeitkomplexität von O(n²)

Es gibt eine optimierte Version des Bubble Sort Algorithmus, der hier im Blog im Artikel „Der optimierte Bubble Sort in Java“ vorgestellt wird.