Algorithmen und Datenstrukturen: Notationen

Notationen

NotationDefinitionZweckBeispiel
O-Notation (Big O) Die O-Notation beschreibt das schlechteste Szenario der Laufzeit eines AlgorithmusSie gibt an, wie die Laufzeit eines Algorithmus im schlimmsten Fall wächst, wenn die Eingabegröße gegen unendlich geht.Wenn ein Algorithmus eine Laufzeit von O(n²) hat, bedeutet das, dass die Laufzeit im schlimmsten Fall quadratisch zur Eingabegröße n wächst.
Small-o-Notation (small o) Die Small-o-Notation beschreibt eine obere Schranke für die Laufzeit eines Algorithmus, die jedoch nicht notwendigerweise die schlechteste Laufzeit ist. Sie gibt an, dass die Laufzeit eines Algorithmus asymptotisch kleiner ist als eine bestimmte Funktion.Sie wird verwendet, um zu zeigen, dass die Laufzeit eines Algorithmus schneller wächst als eine bestimmte Funktion, aber langsamer als eine andere.Wenn ein Algorithmus eine Laufzeit von o(n²) hat, bedeutet das, dass die Laufzeit asymptotisch kleiner ist als n², aber nicht notwendigerweise im schlimmsten Fall.
Omega-Notation (Big Ω)Die Omega-Notation beschreibt das beste Szenario der Laufzeit eines Algorithmus.Sie gibt an, wie die Laufzeit eines Algorithmus im besten Fall wächst, wenn die Eingabegröße gegen unendlich geht.Wenn ein Algorithmus eine Laufzeit von Ω(n) hat, bedeutet das, dass die Laufzeit im besten Fall linear zur Eingabegröße n wächst.
Kleine Omega-Notation (kleines ω)Die kleine Omega-Notation beschreibt eine untere Schranke für die Laufzeit eines Algorithmus, die jedoch nicht notwendigerweise die beste Laufzeit ist. Sie gibt an, dass die Laufzeit eines Algorithmus asymptotisch größer ist als eine bestimmte Funktion.Sie wird verwendet, um zu zeigen, dass die Laufzeit eines Algorithmus langsamer wächst als eine bestimmte Funktion, aber schneller als eine andere.Wenn ein Algorithmus eine Laufzeit von ω(n) hat, bedeutet das, dass die Laufzeit asymptotisch größer ist als n, aber nicht notwendigerweise im besten Fall.
Theta-Notation (Θ)Die Theta-Notation beschreibt sowohl die obere als auch die untere Schranke der Laufzeit eines Algorithmus. Sie gibt an, dass die Laufzeit eines Algorithmus asymptotisch zwischen zwei Funktionen liegt.Sie wird verwendet, um die genaue Wachstumsrate der Laufzeit eines Algorithmus zu beschreiben, indem sie sowohl das beste als auch das schlechteste Szenario berücksichtigt.Wenn ein Algorithmus eine Laufzeit von Θ(n²) hat, bedeutet das, dass die Laufzeit asymptotisch sowohl durch n² nach oben als auch nach unten beschränkt ist.

Exakte Wachstumsrate (sowohl obere als auch untere Schranke)
Notationen (tabellarisch)

O-Notation (Big O)

  • Zweck: Beschreibt das schlechteste Szenario der Laufzeit eines Algorithmus. Sie gibt an, wie die Laufzeit im schlimmsten Fall wächst, wenn die Eingabegröße gegen unendlich geht.

Omega-Notation (Big Ω)

  • Zweck: Beschreibt das beste Szenario der Laufzeit eines Algorithmus. Sie gibt an, wie die Laufzeit im besten Fall wächst, wenn die Eingabegröße gegen unendlich geht.

Small-o-Notation (kleines o)

  • Zweck: Beschreibt eine obere Schranke für die Laufzeit eines Algorithmus, die jedoch nicht notwendigerweise die schlechteste Laufzeit ist. Sie zeigt, dass die Laufzeit asymptotisch kleiner ist als eine bestimmte Funktion.

Theta-Notation (Θ)

  • Zweck: Beschreibt sowohl die obere als auch die untere Schranke der Laufzeit eines Algorithmus. Sie gibt die genaue Wachstumsrate der Laufzeit an, indem sie sowohl das beste als auch das schlechteste Szenario berücksichtigt.

Kleine Omega-Notation (kleines ω)

  • Zweck: Beschreibt eine untere Schranke für die Laufzeit eines Algorithmus, die jedoch nicht notwendigerweise die beste Laufzeit ist. Sie zeigt, dass die Laufzeit asymptotisch größer ist als eine bestimmte Funktion.

Algorithmen und Datenstrukturen: Der optimierte Bubble Sort in Java

Der Algorithmus

Dieser Algorithmus ist eine Erweiterung des normalen Bubble Sort Algorithmus. Wie dieser wird hierbei ein Array durchlaufen und das Element der aktuellen Iteration mit dem Nachfolgeelement getauscht, wenn dieses kleiner ist. Dadurch blubbern die Zahlen vom Array-Anfang bis zum Ende in einen sortierten Bereich auf der rechten Seite des Arrays nach oben.

Der optimierte Bubble Sort-Algorithmus bricht weitere Iterationen ab, wenn er in in seiner if-Bedingung nichts mehr zum Tauschen gefunden hat. Dies vermerkt er in einer bool-Variable, was die umgebende do…while-Schleife nutzt um den Algorithmus abzubrechen.

package AlgoDat;
 
public class OptimizedBubbleSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};
 
    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static OptimizedBubbleSort program;
 
    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }
 
            System.out.println();
        }
    }
 
    // Konstruktor
    public OptimizedBubbleSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);
 
        // Da wir eine do .. while-Schleife nun nutzen,
        // zählen wir einen Index darin runter um diesen
        // im Array jederzeit adressieren zu können.
        int sortierterBereichRechts = myArray.length;
 
        // Wenn in einer Iteration nix getauscht wurde
        // wird das für alle weiteren auch der Fall sein.
        // In dem Fall kann der Algorithmus enden.
        boolean hatteNochWasZuTun = false;
 
        do
        {
            // Am Anfang gibts nix zu tun
            hatteNochWasZuTun = false;   
 
            System.out.println("Iteration: " + (myArray.length - sortierterBereichRechts + 1));
 
            for (int i = 0; i < sortierterBereichRechts - 1; i++)
            {
                if (myArray[i] > myArray[i + 1])
                {
                    this.vertausche(myArray, i, i + 1);
                    System.out.print("Tausche: ");
                    this.OutputOfIntArray(myArray);
                    hatteNochWasZuTun = true;
                }
            }
             
            // Der sortierte Bereich wächst
            sortierterBereichRechts--;
        }
        while (hatteNochWasZuTun);
 
        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
    }
 
    public void vertausche(int[] arrayToSwap, int idx1, int idx2)
    {
        int swapVar = arrayToSwap[idx1];
        arrayToSwap[idx1] = arrayToSwap[idx2];
        arrayToSwap[idx2] = swapVar;
    }
 
    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new OptimizedBubbleSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Iteration: 1
Tausche: 6;22;2;4;10;3;9;7;5;8;1
Tausche: 6;2;22;4;10;3;9;7;5;8;1
Tausche: 6;2;4;22;10;3;9;7;5;8;1
Tausche: 6;2;4;10;22;3;9;7;5;8;1
Tausche: 6;2;4;10;3;22;9;7;5;8;1
Tausche: 6;2;4;10;3;9;22;7;5;8;1
Tausche: 6;2;4;10;3;9;7;22;5;8;1
Tausche: 6;2;4;10;3;9;7;5;22;8;1
Tausche: 6;2;4;10;3;9;7;5;8;22;1
Tausche: 6;2;4;10;3;9;7;5;8;1;22
Iteration: 2
Tausche: 2;6;4;10;3;9;7;5;8;1;22
Tausche: 2;4;6;10;3;9;7;5;8;1;22
Tausche: 2;4;6;3;10;9;7;5;8;1;22
Tausche: 2;4;6;3;9;10;7;5;8;1;22
Tausche: 2;4;6;3;9;7;10;5;8;1;22
Tausche: 2;4;6;3;9;7;5;10;8;1;22
Tausche: 2;4;6;3;9;7;5;8;10;1;22
Tausche: 2;4;6;3;9;7;5;8;1;10;22
Iteration: 3
Tausche: 2;4;3;6;9;7;5;8;1;10;22
Tausche: 2;4;3;6;7;9;5;8;1;10;22
Tausche: 2;4;3;6;7;5;9;8;1;10;22
Tausche: 2;4;3;6;7;5;8;9;1;10;22
Tausche: 2;4;3;6;7;5;8;1;9;10;22
Iteration: 4
Tausche: 2;3;4;6;7;5;8;1;9;10;22
Tausche: 2;3;4;6;5;7;8;1;9;10;22
Tausche: 2;3;4;6;5;7;1;8;9;10;22
Iteration: 5
Tausche: 2;3;4;5;6;7;1;8;9;10;22
Tausche: 2;3;4;5;6;1;7;8;9;10;22
Iteration: 6
Tausche: 2;3;4;5;1;6;7;8;9;10;22
Iteration: 7
Tausche: 2;3;4;1;5;6;7;8;9;10;22
Iteration: 8
Tausche: 2;3;1;4;5;6;7;8;9;10;22
Iteration: 9
Tausche: 2;1;3;4;5;6;7;8;9;10;22
Iteration: 10
Tausche: 1;2;3;4;5;6;7;8;9;10;22
Iteration: 11
Nachher: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

Worst- und Average-Case

Wie beim normalen Bubble Sort beträgt die Laufzeit-Komplexität im normalen und durchschnittlichen Fall O(n²).

Best-Case

Im Best-Case bricht der Algorithmus aber bereits nach einer Iteration ab, was einer Laufzeitkomplexität von O(n) entspricht.

Algorithmen und Datenstrukturen: Der „Randomized Single-Pivot QuickSort“ in Java

Der Algorithmus

Der QuickSort-Algorithmus ist ein rekursiver Sortieralgorithmus nach dem Teile- und Herrsche-Prinzip. Er ruft sich so lange selber auf, bis alle Array-Elemente auf der linken und rechten Stack-Seite eines Pivot-Elements sortiert sind. Zunächst wird die zu sortierende Liste in zwei Teillisten („linke“ und „rechte“ Teilliste) getrennt. Dazu wählt Quicksort ein sogenanntes Pivotelement aus der Liste aus. Alle Elemente, die kleiner als das Pivotelement sind, kommen in die linke Teilliste, und alle, die größer sind, in die rechte Teilliste. Die Elemente, die gleich dem Pivotelement sind, können sich beliebig auf die Teillisten verteilen. Nach der Aufteilung sind die Elemente der linken Liste kleiner oder gleich den Elementen der rechten Liste.

Anschließend muss man also noch jede Teilliste in sich sortieren, um die Sortierung zu vollenden. Dazu wird der Quicksort-Algorithmus jeweils auf der linken und auf der rechten Teilliste ausgeführt. Jede Teilliste wird dann wieder in zwei Teillisten aufgeteilt und auf diese jeweils wieder der Quicksort-Algorithmus angewandt, und so weiter. Diese Selbstaufrufe werden als Rekursion bezeichnet. Wenn eine Teilliste der Länge eins oder null auftritt, so ist diese bereits sortiert und es erfolgt der Abbruch der Rekusion.

Der Prinzip:

  1. Auswahl eine zufälligen Pivot-Elements (muss nicht das kleinste Element im Array sein)
  2. Sortierung aller kleineren Zahlen als das Pivot-Element auf die linke Seite des Stapels/Stacks
  3. Sortierung aller größeren Zahlen als das Pivot-Element auf die rechte Seite des Stapels/Stacks
  4. Rekursiver Aufruf für die linke Seite des Stapels/Stacks bis sich die zwei Left- und Right-Pointer überschneiden, weil keine kleinere Zahl mehr gefunden wurde, die links vom Pivot-Element einsortiert werden kann.
  5. Rekursiver Aufruf für die rechte Seite des Stapels/Stacks bis sich die zwei Left- und Right-Pointer überschneiden, weil keine größere Zahl mehr gefunden wurde, die rechts vom Pivot-Element einsortiert werden kann.
package AlgoDat;
 
public class QuickSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};
 
    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static QuickSort program;
    private java.util.Random rnd = new java.util.Random();
 
    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }
 
            System.out.println();
        }
    }
 
    // Generiert ein zufälliges Integer-Array der Größe size mit Werten zwischen 0 und upperLimit
    public int[] generateIntegerArrayOfSize(int size, int upperLimit)
    {       
        int[] generatedArray = new int[size];
         
        for (int i = 0; i < generatedArray.length; i++)
        {
            generatedArray[i] = rnd.nextInt(upperLimit);
        }
 
        return generatedArray;
    }
 
    public void makeQuickSort(int[] arrayToSort, int fromIndex, int toIndex)
    {
        // Rekursionsabbruch
        if (fromIndex >= toIndex)
        {
            return;
        }
 
        // Das Pivot-Element muss beim Teile-Herrsche-Prinzip nicht die kleinste Zahl im Array sein 
        // und kann willkürlich gewählt werden - wie hier das letzte Element des Array
        int pivot = arrayToSort[toIndex];
        // Im Average Case performt der Quicksort aber besser, wenn es zufällig ausgewählt wird
        // int pivotIndex = rnd.nextInt(toIndex - fromIndex) + fromIndex;
        // int pivot = arrayToSort[pivotIndex];
 
        // Diese Pointer beinhalten den Index der Elemente, die miteinander verglichen und ggfs. vertauscht werden, wenn sie kleiner/größer als das Pivot sind.
        int leftPointer = fromIndex;
        int rightPointer = toIndex;
 
        // Partitioniere, so lange wie sich die Pointer nicht in die Quere kommen
        while (leftPointer < rightPointer)
        {
            // Verschiebe leftPointer so lange, bis ein Element gefunden wird, was größer als das Pivot ist
            // (oder wie sich die Pointer nicht überschneiden)
            while (arrayToSort[leftPointer] <= pivot && leftPointer < rightPointer)
            {
                leftPointer++;
            }
 
            // Verschiebe rightPointer so lange, bis ein Element gefunden wird, was größer als das Pivot ist
            // (oder wie sich die Pointer nicht überschneiden)
            while (arrayToSort[rightPointer] >= pivot && leftPointer < rightPointer)
            {
                rightPointer--;
            }
 
            // Vertausche die Elemente am Index von leftPointer und rightPointer
            int swapVar = arrayToSort[leftPointer];
            arrayToSort[leftPointer] = arrayToSort[rightPointer];
            arrayToSort[rightPointer] = swapVar;
        }
 
        // Vertausche die Elemente am Array-Index von leftPointer und toIndex
        int swapVar = arrayToSort[leftPointer];
        arrayToSort[leftPointer] = arrayToSort[toIndex];
        arrayToSort[toIndex] = swapVar;
 
        // QuickSort für die linke Seite vom Pivot-Element
        this.makeQuickSort(arrayToSort, fromIndex, leftPointer - 1);
 
        // QuickSort für die rechte Seite vom Pivot-Element
        this.makeQuickSort(arrayToSort, leftPointer + 1, toIndex);
    }
 
    // Konstruktor
    public QuickSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);
 
        long startZeit = System.nanoTime();
 
        // this.OutputOfIntArray(this.generateIntegerArrayOfSize(1000, 100));
        this.makeQuickSort(myArray, 0, myArray.length - 1);
 
        long endZeit = System.nanoTime();
 
        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
 
        System.out.println("Ich habe " + (endZeit - startZeit) + " ns gebraucht.");
    }
 
    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new QuickSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Nachher: 1;2;3;4;5;6;7;8;9;10;22
Ich habe 7200 ns gebraucht.

Komplexität: O-Notation (Ordnung)

Der Quick-Sort hat im Average-Case die Komplexität O(n* log(n)) und im Worst-Case die Komplexität O(n²).

Algorithmen und Datenstrukutren: Binäre Suche vs. lineare Suche in JAVA

Der Algorithmus

Die binäre Suche funktioniert nur auf einem bereits sortiertem Datenbestand, daher wird die Zeit für das Sortieren des Arrays „myArray“ mit Merge-Sort auf die Such-Zeit addiert. Da die 11 Elemente im Beispiel-Array sehr wenige sind, sind die Zeiten in ms wenig repräsentativ.

package AlgoDat;
 
public class SearchAlgorithm {
    // Zu durchsuchendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};
     
    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static SearchAlgorithm program;
 
    public int linearSearch(int[] array, int contentToSearchFor)
    {
        for (int i = 0; i < array.length; i++)
        {
            if (array[i] == contentToSearchFor)
            {
                return i;
            }
        }
 
        return -1;
    }
 
    public int binarySearch(int[] myArray, int contentToSearchFor)
    {
        // Start conditions
        int lowIndex = 0;
        int highIndex = myArray.length - 1;
 
        while (lowIndex <= highIndex)
        {
            int middlePosition = (lowIndex + highIndex) / 2;
            int middleContent = myArray[middlePosition];
 
            if (contentToSearchFor == middleContent) 
            {
                return middlePosition;
            }
 
            // Halbieren der Suchelemente
            if (contentToSearchFor < middleContent)
            {
                highIndex = middlePosition - 1;
            }
            else
            {
                lowIndex = middlePosition + 1;
            }
        }
 
        // Außerhalb der While-Schleife wissen wir, dass wir
        // das Element nicht gefunden haben :-(
        return -1;
    }
 
    // Konstruktor
    public SearchAlgorithm()
    {
        int arrayContent = -1;
        long startTime = 0;
        long endTime = 0;
        int index = -1;
        long passedTime = 0;
 
        System.out.println("Lineare Suche");
        System.out.println("=============");
        // Not found
        arrayContent = 23;
        startTime = System.nanoTime();
        index = linearSearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' wurde nicht gefunden in myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = endTime - startTime;
        System.out.println("Lineare Suche not found: " + passedTime + " ms.");
         
        // Best case
        arrayContent = 22;
        startTime =  System.nanoTime();
        index = linearSearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = endTime - startTime;
        System.out.println("Lineare Suche Best-Case: " + passedTime + " ms.");
 
        // Average case
        arrayContent = 3;
        startTime =  System.nanoTime();
        index = linearSearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = endTime - startTime;
        System.out.println("Lineare Suche Average-Case: " + passedTime + " ms.");
 
        // Worst case
        arrayContent = 1;
        startTime =  System.nanoTime();
        index = linearSearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = endTime - startTime;
        System.out.println("Lineare Suche Worst-Case: " + passedTime + " ms.");
 
        System.out.println("Binäre Suche");
        System.out.println("============");
 
        /*********************************************/
        /* die binäre Suche benötigt ein sortiertes  */
        /* Array, damit sie funktioniert.            */
        /*********************************************/
        startTime = System.nanoTime();
        this.mergeSort(myArray);
        endTime =  System.nanoTime();
        long passedSortTime = endTime - startTime;
 
        // Not found
        arrayContent = 23;
        startTime = System.nanoTime();
        index = binarySearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' wurde nicht gefunden in myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = passedSortTime + (endTime - startTime);
        System.out.println("Binäre Suche not found: " + passedTime + " ms.");
         
        // Best case
        arrayContent = 22;
        startTime =  System.nanoTime();
        index = binarySearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = passedSortTime + (endTime - startTime);
        System.out.println("Binäre Suche erstes Element: " + passedTime + " ms.");
 
        // Average case
        arrayContent = 3;
        startTime =  System.nanoTime();
        index = binarySearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = passedSortTime + (endTime - startTime);
        System.out.println("Binäre Suche mittleres Element: " + passedTime + " ms.");
 
        // Worst case
        arrayContent = 1;
        startTime =  System.nanoTime();
        index = binarySearch(myArray, arrayContent);
        System.out.print("Der Array-Element mit dem Inhalt '" + arrayContent + "' befindet sich am Index " + index + " von myArray[]. ");
        endTime =  System.nanoTime();
        passedTime = passedSortTime + (endTime - startTime);
        System.out.println("Binäre Suche letztes Element: " + passedTime + " ms.");
    }
 
    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new SearchAlgorithm();
    }
 
    /**************/
    /* MERGE SORT */
    /**************/
 
    public void mergeSort(int myArray[])
    {
        // Abbruchbedingung der Rekursion im Sinne von Teile-und-Herrsche-Algorithmen
        if (myArray.length == 1) return;
 
        // weist bei ungeraden Zahlen eine abgerundete Ganzzahl zu
        int indexHaelfte = myArray.length / 2;
 
        int[] linkeHaelfte = new int[indexHaelfte];
 
        // Die abgerundete Ganzzahl kann von der Länge abgezogen werden
        // um die Größe des rechten Arrays zu erhalten.
        int[] rechteHaelfte = new int[myArray.length - indexHaelfte];
 
        // Befülle die linke Hälfte 
        for (int i = 0; i < indexHaelfte; i++)
        {
            linkeHaelfte[i] = myArray[i];
        }
 
        // Befülle die rechte Hälfte 
        for (int i = indexHaelfte; i < myArray.length; i++)
        {
            rechteHaelfte[i - indexHaelfte] = myArray[i];
        }
 
        // Hier ist der rekursive Aufruf, indem die beiden Hälften an
        // die mergeSort-Methode selbst übergeben wird.
        this.mergeSort(linkeHaelfte);
        this.mergeSort(rechteHaelfte);
 
        // Hier werden die beiden Arrays wieder kombiniert (geMerged)
        this.merge(myArray, linkeHaelfte, rechteHaelfte);
    }
 
    private void merge(int[] mergeArray, int[] linkeHaelfte, int[] rechteHaelfte)
    {
        int iteratorLinks = 0, iteratorRechts = 0, iteratorMergeArray = 0;
 
        // Da die linke und reche Hälfte bereits sortiert sind, funktioniert die Zuweisung
        // in ein neues Array mit einer einzigen Schleife der Komplexität/Ordnung O(n).
        while (iteratorLinks < linkeHaelfte.length && iteratorRechts < rechteHaelfte.length)
        {
            if (linkeHaelfte[iteratorLinks] <= rechteHaelfte[iteratorRechts])
            {
                mergeArray[iteratorMergeArray] = linkeHaelfte[iteratorLinks];
                iteratorLinks++;
            }
            else
            {
                mergeArray[iteratorMergeArray] = rechteHaelfte[iteratorRechts];
                iteratorRechts++;
            }
 
            iteratorMergeArray++;
        }
 
        // Wenn noch Elemente in der linken Hälfte waren, die nicht verglichen wurden,
        // werden diese dem Merged Array hinzugefügt
        while (iteratorLinks < linkeHaelfte.length)
        {
            mergeArray[iteratorMergeArray] = linkeHaelfte[iteratorLinks];
            iteratorLinks++;
            iteratorMergeArray++;
        }
 
        // Wenn noch Elemente in der rechten Array-Hälfte waren, die nicht verglichen wurden,
        // werden diese dem Merged Array hinzugefügt
        while (iteratorRechts < rechteHaelfte.length)
        {
            mergeArray[iteratorMergeArray] = rechteHaelfte[iteratorRechts];
            iteratorRechts++;
            iteratorMergeArray++;
        }
    }
}

Ausgabe

Lineare Suche
=============
Der Array-Element mit dem Inhalt '23' wurde nicht gefunden in myArray[]. Lineare Suche not found: 20969800 ms.
Der Array-Element mit dem Inhalt '22' befindet sich am Index 0 von myArray[]. Lineare Suche Best-Case: 9613200 ms.
Der Array-Element mit dem Inhalt '3' befindet sich am Index 5 von myArray[]. Lineare Suche Average-Case: 337400 ms.
Der Array-Element mit dem Inhalt '1' befindet sich am Index 10 von myArray[]. Lineare Suche Worst-Case: 270200 ms.
 
Binäre Suche
============
Der Array-Element mit dem Inhalt '23' wurde nicht gefunden in myArray[]. Binäre Suche not found: 206800 ms.
Der Array-Element mit dem Inhalt '22' befindet sich am Index 10 von myArray[]. Binäre Suche erstes Element: 271400 ms.
Der Array-Element mit dem Inhalt '3' befindet sich am Index 2 von myArray[]. Binäre Suche mittleres Element: 306700 ms.
Der Array-Element mit dem Inhalt '1' befindet sich am Index 0 von myArray[]. Binäre Suche letztes Element: 302800 ms.

Komplexität: O-Notation (Ordnung)

Die Komplexität der binären Suche wird mit

beschrieben, wobei die Komplexität des vorangegangenen Merge-Sort-Algorithmus mitgerechnet werden muss, da die binäre Suche nur auf einem binären Datenbestand funktioniert. Somit ergibt sich

, wobei die additiven Bestandteile log(n) wegfallen. Somit ergibt sich im vorliegenden Falle die Komplexität O(n*log(n)) wegen der vorangegangen Sortierung. Ist diese nicht notwendig bleibt es bei der O-Notation O(log(n)).

Algorithmen und Datenstrukturen: O-Notation / Komplexität der rekursiven Fakultät

Der Algorithmus

Bei der rekursiven Fakultät handelt es sich um einen rekursiven Funktionsaufruf:

package AlgoDat;
 
public class RekursiveFakultaet {
    // Zu sortierendes Array
     
    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static RekursiveFakultaet program;
 
    public long berechneFakultaet(int teilFakultaet)
    {
        // Abbruchbedingung der Rekursion wenn 1 erreicht ist
        if (teilFakultaet == 1) return 1;
 
        // Multipliziere rekursiv f(n) = n * f(n - 1) bis 1
        return teilFakultaet * berechneFakultaet(teilFakultaet - 1);
    }
 
    // Konstruktor
    public RekursiveFakultaet()
    {
        System.out.println(this.berechneFakultaet(25) + "");        
    }
 
    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new RekursiveFakultaet();
    }
}

Ausgabe

7034535277573963776

Komplexität: O-Notation (Ordnung)

Der rekursive Aufruf dieser Art kann als primitiv rekursiven Klasse gezählt werden und besitzt die lineare Komplexität / O-Notation:

Algorithmen und Datenstrukturen: Der Merge Sort in Java

Der Algorithmus

Der MergeSort-Algorithmus ist ein stabiler Sortieralgorithmus nach dem Teile-und-Herrsche-Prinzip. Im ersten Teil wird das Array rekursiv so lange halbiert, bis in jeder Liste nur noch 1 Element vorhanden ist. Bei einer Liste mit einem Element geht man davon aus, dass die Liste automatisch als sortiert gilt. Danach können alle nachfolgenden Operationen von zwei sortierten Listen ausgehen, wodurch weniger Operationen beim Zusammenführen ausreichen um ein neues sortiertes Array zu erhalten.

Im zweiten Teil werden die bereits sortierten Listenhälften verglichen und mit der Komplexität O(n) je rekursiver Iteration verglichen und zusammengeführt (siehe den nachfolgenden JAVA Code).

package AlgoDat;

public class MergeSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};

    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static MergeSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    public void mergeSort(int myArray[])
    {
        // zunächst wird das Array ab der Hälfte in zwei
        // Arrays links und rechts geteilt, das passiert
        // rekursiv ... und zwar so lange bis jedes Element
        // für sich nur noch 1x vorhanden ist (Teile-Herrsche-Prinzip).
        // Das Teilen ist damit erledigt und nun sollte da
        // Problem dadurch beherrschbarer werden -> nun 
        // werden die Einzelelemente wieder in Arrays sortiert. 
        // Die Abbruchbedingung der Rekursion ist, wenn die Liste 
        // nur noch ein einziges Element hat, wobei die Liste bei
        // einem einzigem Element als sortiert gilt.
        if (myArray.length == 1) return;

        // weist bei ungeraden Zahlen eine abgerundete Ganzzahl zu
        int indexHaelfte = myArray.length / 2;

        int[] linkeHaelfte = new int[indexHaelfte];

        // Die abgerundete Ganzzahl kann von der Länge abgezogen werden
        // um die Größe des rechten Arrays zu erhalten.
        int[] rechteHaelfte = new int[myArray.length - indexHaelfte];

        // Befülle die linke Hälfte 
        for (int i = 0; i < indexHaelfte; i++)
        {
            linkeHaelfte[i] = myArray[i];
        }

        // Befülle die rechte Hälfte 
        for (int i = indexHaelfte; i < myArray.length; i++)
        {
            rechteHaelfte[i - indexHaelfte] = myArray[i];
        }

        // Hier ist der rekursive Aufruf, indem die beiden Hälften an
        // die mergeSort-Methode selbst übergeben wird.
        this.mergeSort(linkeHaelfte);
        this.mergeSort(rechteHaelfte);

        // Hier werden die beiden Arrays wieder kombiniert (geMerged)
        this.merge(myArray, linkeHaelfte, rechteHaelfte);
    }

    private void merge(int[] mergeArray, int[] linkeHaelfte, int[] rechteHaelfte)
    {
        System.out.print("Vergleiche linke Hälfte: ");
        this.OutputOfIntArray(linkeHaelfte);
        System.out.print("mit rechter Hälfte ");
        this.OutputOfIntArray(rechteHaelfte);

        int iteratorLinks = 0, iteratorRechts = 0, iteratorMergeArray = 0;

        // Da die linke und reche Hälfte bereits sortiert sind, funktioniert die Zuweisung
        // in ein neues Array mit einer einzigen Schleife der Komplexität/Ordnung O(n).
        while (iteratorLinks < linkeHaelfte.length && iteratorRechts < rechteHaelfte.length)
        {
            if (linkeHaelfte[iteratorLinks] <= rechteHaelfte[iteratorRechts])
            {
                mergeArray[iteratorMergeArray] = linkeHaelfte[iteratorLinks];
                iteratorLinks++;
            }
            else
            {
                mergeArray[iteratorMergeArray] = rechteHaelfte[iteratorRechts];
                iteratorRechts++;
            }

            iteratorMergeArray++;
        }

        // Wenn noch Elemente in der linken Hälfte waren, die nicht verglichen wurden,
        // werden diese dem Merged Array hinzugefügt
        while (iteratorLinks < linkeHaelfte.length)
        {
            mergeArray[iteratorMergeArray] = linkeHaelfte[iteratorLinks];
            iteratorLinks++;
            iteratorMergeArray++;
        }

        // Wenn noch Elemente in der rechten Array-Hälfte waren, die nicht verglichen wurden,
        // werden diese dem Merged Array hinzugefügt
        while (iteratorRechts < rechteHaelfte.length)
        {
            mergeArray[iteratorMergeArray] = rechteHaelfte[iteratorRechts];
            iteratorRechts++;
            iteratorMergeArray++;
        }
    }

    // Konstruktor
    public MergeSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);

        // Wir lagern alles weitere in eine eigene Methode aus, 
        // da MergeSort ein rekursiver Algorithmus ist, dessen 
        // Funktion aufgerufen werden muss und beeginnen mit dem 
        // unsortierten Array
        this.mergeSort(myArray);

        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new MergeSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Vergleiche linke Hälfte: 22
mit rechter Hälfte 6
Vergleiche linke Hälfte: 4
mit rechter Hälfte 10
Vergleiche linke Hälfte: 2
mit rechter Hälfte 4;10
Vergleiche linke Hälfte: 6;22
mit rechter Hälfte 2;4;10
Vergleiche linke Hälfte: 9
mit rechter Hälfte 7
Vergleiche linke Hälfte: 3
mit rechter Hälfte 7;9
Vergleiche linke Hälfte: 8
mit rechter Hälfte 1
Vergleiche linke Hälfte: 5
mit rechter Hälfte 1;8
Vergleiche linke Hälfte: 3;7;9
mit rechter Hälfte 1;5;8
Vergleiche linke Hälfte: 2;4;6;10;22
mit rechter Hälfte 1;3;5;7;8;9
Nachher: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

Der MergeSort besteht aus 3 Teilen, die sich zu der Gesamtkomplexität zusammensetzen.

Teil 1: (Rekursives) Teilen

Wenn wir ein Array der Größe n in zwei Hälften teilen, benötigen wir

Schritte. Hierbei handelt es sich um den Logarithmus dualis, also den Logarithmus zur Basis 2 (wessen Basis für die 2 Hälften spricht, in die aufgeteilt wird). Dies liegt also daran, dass wir die Liste in jeder Rekursionsebene halbieren. Wir fragen hier also mit welcher Zahl man 2 potenzieren muss um n zu erhalten.

Wenn wir in dem unsortierten Array 11 Elemente haben, würden wir also fragen, mit welcher Zahl wir 2 potenzieren müssen um 11 zu erhalten. Den Exponenten den wir hier erhalten wäre 4:

Wir runden die Kommazahl immer auf die nächste volle Zahl auf, da wir keine halben Schritte machen können. Die Zahl 4 entspricht hier auch der Rekursionstiefe, die benötigt wird bis der aktuelle Rekursions-Heap nur noch aus einem Element bekommt, was zu Abbruch der Rekursion führt.

Der erste Teil besitzt somit die Ordnung:

Teil 2 und 3: Sortieren und Mergen

Der Schritt des Zusammenführens (des Mergens) beider Liste ist mit der Sortierung kombiniert. Hier wird vorausgesetzt dass bereits sortierte Listenhälften vorliegen, da man zwei bereits sortierte Arrays mit der Komplexität n vergleichen kann. Beim Zusammenführen der sortierten Teillisten benötigen wir

Zeit. Dieser Schritt ist linear abhängig von der Gesamtanzahl der Elemente.

Gesamt-Komplexität

Somit ergibt sich die Gesamtkomplexität:

im Worst-, Normal- und Best-Case.

Algorithmen und Datenstrukturen: Der Bubble Sort in Java

Der Algorithmus

Beim „Bubble Sort“ markiert die äußere Schleife das erste Element des noch unsortierten Bereichs, während die innere Schleife ab diesem Element immer bis zum Ende des Arrays ein Element zum Vergleich rauspickt. Ist ein Element kleiner/größer (je nachdem wie der Vergleichsoperator „gedreht“ ist) wird getauscht.

Dies führt am Ende zu der Sortierung des Arrays. Im Gegesatz zum Selection Sort, wo nur das Minimum getauscht wird, wird beim Bubble Sort immer getauscht.

package AlgoDat;

public class BubbleSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};

    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static BubbleSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    // Konstruktor
    public BubbleSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);

        // Äußere Schleife: Laufe das zu sortierende Array von Anfang bis Ende durch (Komplexität: n)
        for (int idxSortierterBereich = 0; idxSortierterBereich < myArray.length - 1 ; idxSortierterBereich++)
        {
            // Innere Schleife: Laufe das Array ab dem Index der äußeren Schleife bis Ende durch (Komplexität: n / 2)
            for (int idxUnsortierterBereich = idxSortierterBereich + 1; idxUnsortierterBereich < myArray.length; idxUnsortierterBereich++)
            {
                // Tausche die Array-Inhalte an den Indizes der inneren und äußeren Schleife
                // wenn diese kleiner/größer sind. Anmerkung: Ein Drehen von < zu > ändert die Sortierreihenfolge
                if (myArray[idxUnsortierterBereich] < myArray[idxSortierterBereich])
                {
                    // Beim Bubble Sort wird im Gegensatz zum Selection Sort immer getauscht.
                    // Beim Selection Sort wird nur das gefundene Minimum getauscht. 
                    // Dieser Code tauscht das Element am Index der äußeren Schleife                
                    // mit dem Element am Index der inneren Schleife
                    int swapVar = myArray[idxUnsortierterBereich];
                    myArray[idxUnsortierterBereich] = myArray[idxSortierterBereich];
                    myArray[idxSortierterBereich] = swapVar;

                    System.out.print("Tausche: ");
                    this.OutputOfIntArray(myArray);
                }
            }
        }

        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new BubbleSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Tausche: 6;22;2;4;10;3;9;7;5;8;1
Tausche: 2;22;6;4;10;3;9;7;5;8;1
Tausche: 1;22;6;4;10;3;9;7;5;8;2
Tausche: 1;6;22;4;10;3;9;7;5;8;2
Tausche: 1;4;22;6;10;3;9;7;5;8;2
Tausche: 1;3;22;6;10;4;9;7;5;8;2
Tausche: 1;2;22;6;10;4;9;7;5;8;3
Tausche: 1;2;6;22;10;4;9;7;5;8;3
Tausche: 1;2;4;22;10;6;9;7;5;8;3
Tausche: 1;2;3;22;10;6;9;7;5;8;4
Tausche: 1;2;3;10;22;6;9;7;5;8;4
Tausche: 1;2;3;6;22;10;9;7;5;8;4
Tausche: 1;2;3;5;22;10;9;7;6;8;4
Tausche: 1;2;3;4;22;10;9;7;6;8;5
Tausche: 1;2;3;4;10;22;9;7;6;8;5
Tausche: 1;2;3;4;9;22;10;7;6;8;5
Tausche: 1;2;3;4;7;22;10;9;6;8;5
Tausche: 1;2;3;4;6;22;10;9;7;8;5
Tausche: 1;2;3;4;5;22;10;9;7;8;6
Tausche: 1;2;3;4;5;10;22;9;7;8;6
Tausche: 1;2;3;4;5;9;22;10;7;8;6
Tausche: 1;2;3;4;5;7;22;10;9;8;6
Tausche: 1;2;3;4;5;6;22;10;9;8;7
Tausche: 1;2;3;4;5;6;10;22;9;8;7
Tausche: 1;2;3;4;5;6;9;22;10;8;7
Tausche: 1;2;3;4;5;6;8;22;10;9;7
Tausche: 1;2;3;4;5;6;7;22;10;9;8
Tausche: 1;2;3;4;5;6;7;10;22;9;8
Tausche: 1;2;3;4;5;6;7;9;22;10;8
Tausche: 1;2;3;4;5;6;7;8;22;10;9
Tausche: 1;2;3;4;5;6;7;8;10;22;9
Tausche: 1;2;3;4;5;6;7;8;9;22;10
Tausche: 1;2;3;4;5;6;7;8;9;10;22
Nachher: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

O(T(n)) = O(n²)

Algorithmen und Datenstrukturen: Der Selection Sort in Java

Der Algorithmus

package AlgoDat;

public class SelectionSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};

    // Hält die Klasse als instanziertes Objekt
    @SuppressWarnings("unused")
    private static SelectionSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    // Konstruktor
    public SelectionSort()
    {
        System.out.print("Vorher: ");
        this.OutputOfIntArray(myArray);

        // Laufe das zu sortierende Array von Anfang bis Ende durch
        for (int idxSortierterBereich = 0; idxSortierterBereich < myArray.length - 1 ; idxSortierterBereich++)
        {
            // Starte an der Index-Position der äußersten Schleife - davor ist schon alles sortiert
            int indexPivotElement = idxSortierterBereich;

            for (int idxUnsortierterBereich = idxSortierterBereich + 1; idxUnsortierterBereich < myArray.length; idxUnsortierterBereich++)
            {
                // ... und merke dir das kleinste Element
                if (myArray[indexPivotElement] > myArray[idxUnsortierterBereich])
                {
                    indexPivotElement = idxUnsortierterBereich;
                }
            }

            // Dieser Code tauscht das neu gefundene Minimum mit dem Element am aktuellen Index der äußeren Schleife                
            int swapVar = myArray[indexPivotElement];
            myArray[indexPivotElement] = myArray[idxSortierterBereich];
            myArray[idxSortierterBereich] = swapVar;

            System.out.print("Tausche: ");
            this.OutputOfIntArray(myArray);
        }

        System.out.print("Nachher: ");
        this.OutputOfIntArray(myArray);
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new SelectionSort();
    }
}

Ausgabe

Vorher: 22;6;2;4;10;3;9;7;5;8;1
Tausche: 1;6;2;4;10;3;9;7;5;8;22
Tausche: 1;2;6;4;10;3;9;7;5;8;22
Tausche: 1;2;3;4;10;6;9;7;5;8;22
Tausche: 1;2;3;4;10;6;9;7;5;8;22
Tausche: 1;2;3;4;5;6;9;7;10;8;22
Tausche: 1;2;3;4;5;6;9;7;10;8;22
Tausche: 1;2;3;4;5;6;7;9;10;8;22
Tausche: 1;2;3;4;5;6;7;8;10;9;22
Tausche: 1;2;3;4;5;6;7;8;9;10;22
Tausche: 1;2;3;4;5;6;7;8;9;10;22
Nachher: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

Zwei verschaltete Schleifen.
Die äußere Schleife läuft von 1 bis n;
Die innere Schleife läuft vom Element der äußeren Schleife bis Schluss -> also n/2, da der Bereich immer kleiner wird.

O(T(n)) = O(n²)

Algorithmen und Datenstrukturen: Der Insertion Sort in Java

Der Algorithmus

Markant sind die zwei verschachtelten Schleifen, wobei die innere Schleife meistens eine While-Schleife mit 2 Bedingungen ist. Ein Index, welcher die Position der Trennung vom sortierten (links) und vom unsortierten (rechts) Bereich präsentiert, wird runtergezählt und das Array-Element an der Index-Position entspricht nach Ende der Schleife der Array-Position, mit der ein gemerktes Element getauscht werden kann. Während der sortierte Bereich (immer links) mit dem ersten Element des unsortierten Bereichs (immer rechts), welches sich gemerkt wird, verglichen wird, werden alle Elemente bis zu diesem Punkt um eins nach rechts gerückt. Dadurch existiert die zu tauschende Position nach diesem Schritt zwei Mal und wird durch das gemerkte Element ausgetauscht.

Die zweite Bedingung der inneren While-Schleife verhindert, das der runterzählende Index negativ wird.

package AlgoDat;

class InsertionSort {
    // Zu sortierendes Array
    private int myArray[] = {22, 6, 2, 4, 10, 3, 9, 7, 5, 8, 1};
    
    // Hält die Klasse InsertionSort als instanziertes Objekt
    @SuppressWarnings("unused")
    private static InsertionSort program;

    // Hilfsfunktion für das Ausgeben des Arrays
    public void OutputOfIntArray(int myArray[])
    {
        if (myArray != null)
        {
            for (int i = 0; i < myArray.length; i++) {
                if (i > 0) System.out.print(";");
                System.out.print(myArray[i]);
            }

            System.out.println();
        }
    }

    // Konstruktor
    public InsertionSort()
    {
        this.OutputOfIntArray(myArray);

        // Bei 1 beginnen, da das Element mit dem Index 0 bereits als sortiert gilt 
        for (int idxSortierterBereich = 1; idxSortierterBereich < myArray.length; idxSortierterBereich++)
        {
            // Merke dir das erste Element vom unsortierten Bereich
            int swapVar = myArray[idxSortierterBereich];
            System.out.println("Gemerkt vor dem Aufrücken: " + swapVar);

            // Das erste unsortierte Element auf der rechten Seite wird in den bereits sortierten Bereich 
            // auf der linken Seite eingefügt, womit der unsortierte Bereich immer weiter nach rechts rückt
            // und dann verschwindet.
            int idxUnsortierterBereich = idxSortierterBereich; 
            System.out.println("Der unsortierte Bereich beginnt bei Index: " + idxUnsortierterBereich);

            // Laufe im Array von rechts nach links, so lange wie vorige Element noch größer wie 
            // das erste Element vom unsortierten Bereich ist und der Bereich nicht negativ wird
            while (idxUnsortierterBereich > 0 && myArray[idxUnsortierterBereich - 1] > swapVar)
            {
                // Alles eins nach rechts im Array rücken bis zum bereits sortierten Bereich
                myArray[idxUnsortierterBereich] = myArray[idxUnsortierterBereich - 1] ;
                idxUnsortierterBereich--;

                System.out.print("Nach rechts aufrücken: ");
                this.OutputOfIntArray(myArray);
            }

            System.out.println("Tausche Stelle " + (idxUnsortierterBereich + 1) + " (" + myArray[idxUnsortierterBereich] + 
            ") mit gemerkter Stelle " + (idxSortierterBereich + 1) + " (" + swapVar + ")");

            myArray[idxUnsortierterBereich] = swapVar;

            System.out.print("Getauscht: ");
            this.OutputOfIntArray(myArray);
        }
    }

    public static void main(String[] args) 
    {
        // Instanziere aus den statischem Programm ein echtes Objekt
        // damit nicht alle Methoden und Variablen static sein müssen.
        program = new InsertionSort();
    }
}

Ausgabe

22;6;2;4;10;3;9;7;5;8;1
Gemerkt vor dem Aufrücken: 6
Der unsortierte Bereich beginnt bei Index: 1
Nach rechts aufrücken: 22;22;2;4;10;3;9;7;5;8;1
Tausche Stelle 1 (22) mit gemerkter Stelle 2 (6)
Getauscht: 6;22;2;4;10;3;9;7;5;8;1
Gemerkt vor dem Aufrücken: 2
Der unsortierte Bereich beginnt bei Index: 2
Nach rechts aufrücken: 6;22;22;4;10;3;9;7;5;8;1
Nach rechts aufrücken: 6;6;22;4;10;3;9;7;5;8;1
Tausche Stelle 1 (6) mit gemerkter Stelle 3 (2)
Getauscht: 2;6;22;4;10;3;9;7;5;8;1
Gemerkt vor dem Aufrücken: 4
Der unsortierte Bereich beginnt bei Index: 3
Nach rechts aufrücken: 2;6;22;22;10;3;9;7;5;8;1
Nach rechts aufrücken: 2;6;6;22;10;3;9;7;5;8;1
Tausche Stelle 2 (6) mit gemerkter Stelle 4 (4)
Getauscht: 2;4;6;22;10;3;9;7;5;8;1
Gemerkt vor dem Aufrücken: 10
Der unsortierte Bereich beginnt bei Index: 4
Nach rechts aufrücken: 2;4;6;22;22;3;9;7;5;8;1
Tausche Stelle 4 (22) mit gemerkter Stelle 5 (10)
Getauscht: 2;4;6;10;22;3;9;7;5;8;1
Gemerkt vor dem Aufrücken: 3
Der unsortierte Bereich beginnt bei Index: 5
Nach rechts aufrücken: 2;4;6;10;22;22;9;7;5;8;1
Nach rechts aufrücken: 2;4;6;10;10;22;9;7;5;8;1
Nach rechts aufrücken: 2;4;6;6;10;22;9;7;5;8;1
Nach rechts aufrücken: 2;4;4;6;10;22;9;7;5;8;1
Tausche Stelle 2 (4) mit gemerkter Stelle 6 (3)
Getauscht: 2;3;4;6;10;22;9;7;5;8;1
Gemerkt vor dem Aufrücken: 9
Der unsortierte Bereich beginnt bei Index: 6
Nach rechts aufrücken: 2;3;4;6;10;22;22;7;5;8;1
Nach rechts aufrücken: 2;3;4;6;10;10;22;7;5;8;1
Tausche Stelle 5 (10) mit gemerkter Stelle 7 (9)
Getauscht: 2;3;4;6;9;10;22;7;5;8;1
Gemerkt vor dem Aufrücken: 7
Der unsortierte Bereich beginnt bei Index: 7
Nach rechts aufrücken: 2;3;4;6;9;10;22;22;5;8;1
Nach rechts aufrücken: 2;3;4;6;9;10;10;22;5;8;1
Nach rechts aufrücken: 2;3;4;6;9;9;10;22;5;8;1
Tausche Stelle 5 (9) mit gemerkter Stelle 8 (7)
Getauscht: 2;3;4;6;7;9;10;22;5;8;1
Gemerkt vor dem Aufrücken: 5
Der unsortierte Bereich beginnt bei Index: 8
Nach rechts aufrücken: 2;3;4;6;7;9;10;22;22;8;1
Nach rechts aufrücken: 2;3;4;6;7;9;10;10;22;8;1
Nach rechts aufrücken: 2;3;4;6;7;9;9;10;22;8;1
Nach rechts aufrücken: 2;3;4;6;7;7;9;10;22;8;1
Nach rechts aufrücken: 2;3;4;6;6;7;9;10;22;8;1
Tausche Stelle 4 (6) mit gemerkter Stelle 9 (5)
Getauscht: 2;3;4;5;6;7;9;10;22;8;1
Gemerkt vor dem Aufrücken: 8
Der unsortierte Bereich beginnt bei Index: 9
Nach rechts aufrücken: 2;3;4;5;6;7;9;10;22;22;1
Nach rechts aufrücken: 2;3;4;5;6;7;9;10;10;22;1
Nach rechts aufrücken: 2;3;4;5;6;7;9;9;10;22;1
Tausche Stelle 7 (9) mit gemerkter Stelle 10 (8)
Getauscht: 2;3;4;5;6;7;8;9;10;22;1
Gemerkt vor dem Aufrücken: 1
Der unsortierte Bereich beginnt bei Index: 10
Nach rechts aufrücken: 2;3;4;5;6;7;8;9;10;22;22
Nach rechts aufrücken: 2;3;4;5;6;7;8;9;10;10;22
Nach rechts aufrücken: 2;3;4;5;6;7;8;9;9;10;22
Nach rechts aufrücken: 2;3;4;5;6;7;8;8;9;10;22
Nach rechts aufrücken: 2;3;4;5;6;7;7;8;9;10;22
Nach rechts aufrücken: 2;3;4;5;6;6;7;8;9;10;22
Nach rechts aufrücken: 2;3;4;5;5;6;7;8;9;10;22
Nach rechts aufrücken: 2;3;4;4;5;6;7;8;9;10;22
Nach rechts aufrücken: 2;3;3;4;5;6;7;8;9;10;22
Nach rechts aufrücken: 2;2;3;4;5;6;7;8;9;10;22
Tausche Stelle 1 (2) mit gemerkter Stelle 11 (1)
Getauscht: 1;2;3;4;5;6;7;8;9;10;22

Komplexität: O-Notation (Ordnung)

O(T(n)) = O(n^2/2+n/2-n) = O(n^2/2) = O (n^2)

Die äußere Schleife läuft von 1 bis n-1, während die innere While-Schleife vom ersten Element des unsortierten Bereichs bis zu der Stelle der richtige Einfügeposition läuft.

Äußere Schleife: Iteriert n-1 mal.
Innere Schleife: Iteriert 1x für Element 1, 2x für Element 2, 3x für Element 3, … n mal für Element n, was zu einer Laufzeit von

führt. Daraus folgt:

Additive Bestandteile, Faktoren und Konstanten fallen bei der Bestimmung der Ordnung weg, daher ist die Ordnung O(n²). Die Domäne ist der dominante Teil der Ordnung – sie ist n² .

Neuronale Netze (KNN) / KI-Training: Das Format / der Aufbau vom MNIST-Datensatz (MNIST Datenbank) der Dateien t10k-images-idx3-ubyte, t10k-labels-idx1-ubyte, train-images-idx3-ubyte, train-labels-idx1-ubyte

Intention

Zum Auffrischen des eigenen Wissens über künstliche neuronale Netze (KNN) möchte man sich mit Frameworks wie PyTorch oder TensorFlow auseinandersetzen.

Problem

In den ersten Tutorials ist meistens die Rede vom „MNIST-Datensatz“ oder der „MNIST Datenbank“ mit 70.000 handgeschriebenen Ziffern im Format 28×28 mit 256 Grauwerten je Pixel (also je Byte). 60.000 Bilder davon sind zum Trainieren, 10.000 Bilder zum Testen eines neuronalen Netzes. Die Dateiendung der entpackten Dateien lässt sich nicht einfach in *.bmp umbenennen und zum Beispiel mit Paint öffnen. Man weiß erstmal nicht in welchem Format die Dateien sind um sich einzelne Zahlen anzusehen.

Laut „https://yann.lecun.com/exdb/mnist“ (manchmal nur über einen archive.org-Snapshot erreichbar) handelt es sich bei diesem Format nicht um ein Standard-Bildformat. Man muss ein eigenes Programm schreiben um diese Bilder zu interpretieren.

Analyse

train-images-idx3-ubyte, t10k-images-idx3-ubyte

Diese Dateien sind mit GZip (Endung *.gz) gepackt und lassen sich in Windows direkt mit einem Doppelklick öffnen oder mit einem Rechtsklick extrahieren:

Die *-images*-Dateien enthalten Bilder von handgeschriebenen Ziffern zwischen 0 und 9, die von Studenten und Mitarbeitern der Universität von South Carolina Beaufort im Jahre 1994 gesammelt wurden.

Öffnet man die extrahierten Dateien in einem Hexadezimaleditor wie zum Beispiel dem kostenlosen HxD-Editor und stellt die Spaltenanzahl auf 28 um, ist bereits ein Muster der enthaltenen Zahlen erkennbar:

Die ersten 16 Byte haben den folgenden Aufbau:

[offset] [type]          [value]          [description]
0000     32 bit integer  0x00000803(2051) magic number
0004     32 bit integer  60000            number of images
0008     32 bit integer  28               number of rows
0012     32 bit integer  28               number of columns
0016     unsigned byte   ??               pixel
0017     unsigned byte   ??               pixel
........
xxxx     unsigned byte   ??               pixel

Die 0x08 des dritten Bytes in der Magic Number sagt aus, dass es sich hierbei um UByte-Werte anhandelt. Das dritte Byte kann dabei die folgenden Werte annehmen:

The third byte codes the type of the data:
0x08: unsigned byte
0x09: signed byte
0x0B: short (2 bytes)
0x0C: int (4 bytes)
0x0D: float (4 bytes)
0x0E: double (8 bytes)

Das vierte Byte in der Magic Number hat hier den Wert 0x03, was bedeutet das unsere Daten 3 Dimensionen für den Pixel haben (x-Pos, y-Pos, Pixelwert/Grauwert[0-255]).

Entfernt man den markierten Header mit den ersten 16 Bytes (siehe obiges Bild) z.B. im HxD, indem man einfach die Entfernen-Taste drückt, ist das Schriftmuster bereits im HEX-Editor erkennbar:

Wie bereits erwähnt, hat jeder Pixel einen Wert zwischen 0 (weiß) und 255 (schwarz) [Magic Number: 3. Byte], wobei die Zwischenwerte lineare Abstufungen für Grauwerte sind.

Hier noch ein Beispiel der Fashion-MNIST-Datenbank mit Kleidungsstücken (von Zalando):

train-labels-idx1-ubyte, t10k-labels-idx1-ubyte

Der Aufbau der *-labels*-Dateien ist ähnlich. Als Label werden hier die Zahlen mit den Werten zwischen 0 bis 9 in der selben Reihenfolge wie in den *-images*-Dateien aufgeführt. Diese beginnen nach dem Header an Position 8 (hier 5 und 0 / unten wie oben im Screenshot):

Das Format ist also:

[offset] [type]         [value]          [description]
0000 32 bit integer 0x00000801(2049) magic number
0004 32 bit integer 60000 number of images
0008 byte [0-9] Ziffer zw. 0-9
……..

by Björn Karpenstein